The tegu lizard and the origin of warm-blooded animals by Piter Kehoma Boll

Warm blood is the popular way to refer to endothermy, the ability that certain animals have to maintain a high body temperature by the use of heat generated via metabolism, especially in internal organs. Mammals and birds are the only extant groups in which all representatives are endothermic, but some fish also have this feature.

Tunna fish are truly endoothermic fish, similar to mammals and birds.

Tunna fish are truly endothermic fish, similar to mammals and birds. Photo by**

In order to maintain a high body temperature, endothermic animals need a much higher amount of daily food than ectothermic animals (the ones that rely on environmental sources to adjust their body heat). There must be, therefore, a considerable advantage in endothermy to explain such a increased consumption of resources. The advantages include the ability to remain active in areas of low temperature and an increase in efficienty of enzimatic reactions, muscle contractions and molecular transmission across synapses.

The origin of endothermy is still a matter of debate and several hypothesis have been erected. The main ones are:

1. A migration from ectothermy to inertial homeothermy and finally endothermy.

According to this hypothesis, animals that were initially ectothermic grew in size, becoming inertially homeothermic, i.e., they retained a considerable constant internal body temperature due to the reduced surface area in relation to the their volume. Lately, selective pressures forced those animals to reduce in size, which made them unable to sustain a constant internal temperature and therefore their enzimatic, muscular and synaptic efficiency became threatened. As a result, they were forced to develop an alternative way to maintain a high body temperature and acquired it through endothermy.

Initially considered a plausible explanation due to the body size of the ancestors of mammals in fossil record, new phylogenetic interpretations caused a complete mix of large-bodied and small-bodied animals, so that currently fossils don’t support this idea anymore.

2. A large brain heating the body

The brain in endothermic species produces much more heat than any other organs. This led to the assumption that maybe a large brain generating heat was the responsible for the later development of full endothermy. However, evidence from both exant and extinct species point to the opposite. It seems more reasonable that a large brain evolved after endothermy and not the opposite.

3. A nocturnal life needs more heat

This idea states that the development of endothermy happened as a way to allow animals to be active during the night. The fact that most primitive mammals appear to have been nocturnal seems to support this hypothesis, but in fact many extant nocturnal mammals actually have a lower body temperature than diurnal mammals. Other aspect that counts against this hypothesis is that the ancestors of mammals already showed evidences of an increase in body temperature despite the fact that they most likely were not nocturnal.

4. Heat to help the embryos to develop

As you may know, in many ectothermic vertebrates, such as reptiles, eggs need to be incubated at a constant temperature in order to develop adequately. Endothermy, therefore, could have evolved as a way to allow parents to incubate the eggs themselves and have a higher control on temperature stability. One fact that support this theory is the dual role of thyroid hormones in reproduction and in the control of metabolic rate.

Endothermy may have evolved to incubate eggs at a constant temperature.

Endothermy may have evolved to incubate eggs at a constant temperature. Photo by Bruce Tuten**

5. Aerobic capicity leading to the heating of internal organs

According to this hypothesis, endothermy evolved after the increase of aerobic capacity, i.e., the first thing to happen was to increase the ability of muscles to consume oxygen in order to release energy, which helped the animal to move faster, among other things. This increased aerobic capicity was attained by increasing the number of mitochondria in muscle cells, which led to higher body temperature in the muscules and consequently a higher visceral temperature. Despite fossils indicating that mammal ancestors developed morphological adaptations indicating increased aerobic capacity, it is not possible to afirm that endothermy was not already present in those species.

Very recently, it has been found that the tegu lizards (Salvator merianae) from South America increase their body temperature during the reproductive season, achieving as much as 10°C above the environment temperature at night. Thus, it seems that they are able to increase heat production and heat conservation in ways similar to the ones used by fully endothermic animals.

The tegu lizard Salvator merianae is a facultative endotherm.

The tegu lizard Salvator merianae is a facultative endotherm. Photo by Jami Dwyer.

As such an increase in body temperature happens during the reproductive cycle, it supports the hypothesis of endothermy evolving to assist the development of embryos, as explained above. Also, it indicates that ectotherms may engage in temporary endothermy and perhaps permanent endothermy may have evolved by using this path.

Further studies on the tegu lizards are needed to clarify this interesting phenomenon and expand our knowledge on endothermy evolution in mammals and birds.

– – –


Kemp, T. (2006). The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure Zoological Journal of the Linnean Society, 147 (4), 473-488 DOI: 10.1111/j.1096-3642.2006.00226.x

Tattersall, G., Leite, C., Sanders, C., Cadena, V., Andrade, D., Abe, A., & Milsom, W. (2016). Seasonal reproductive endothermy in tegu lizards Science Advances, 2 (1) DOI: 10.1126/sciadv.1500951

Wikipedia. Endotherm. Available at: <;. Access on February 1, 2016.

– – –

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License.

** Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 Generic License.


1 Comment

Filed under Behavior, Ecology, Evolution, Paleontology, Zoology

One response to “The tegu lizard and the origin of warm-blooded animals

  1. The parental care hypothesis might in fact hold some water. Modern primitive type mammals like tenrecs for example maintain a constant temperature only when pregnant. On the other hand, monitor lizards, with their more elevated metabolisms, might prove the aerobic capacity model. And like mammals, monitors have started to pay the price for their expensive lifestyle, as if they have no constant access to heat and a uninterrupted supply of food, they decline rapidly, at least from observations in captivity. Other lizards can wait it out in a torpid state. I don’t know how much of an advantage endothermy would confer to a nocturnal species, given that today there are a lot of nocturnal predators like geckos which remain ectothermic. And the world back then was generally warmer. But it is not necessary for one of these models to be the sole edxplanation.
    The idea of a large brain warming the body seems absurd to me. Most presumably endothermic archosaurs did not have much larger brains than ‘normal’ reptiles, and even many primitive-type mammals today have quite small brains.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s