Monthly Archives: May 2017

Friday Fellow: Hummingbird Bobtail Squid

by Piter Kehoma Boll

If you are digging through the sand at the bottom of the clear tropical waters around Indonesia and the Philippines, you may end up finding a colorful little creature, the hummingbird bobtail squid, Euprymna berryi, also known as Berry’s bobtail squid.

Euprymna_berryi

A beautiful specimen photographed in East Timor. Photo by Nick Hobgood.*

Measuring about 3 cm if male or 5 cm if female, the humminbird bobtail squid is actually more closely related to cuttlefish than to true squids. Its body has a translucent skin marked by many black chromatophores, and to the human eye the animal seems to have a color pattern formed by a blend of black, electric blue and green or purple dots.

During the day, the hummingbid bobtail squid remains most of the time buried in the sand, coming out at night to capture small crustaceans, which it hunts using a bioluminescent organ in its gill cavity.

In some areas around its distribution, the hummingbid bobtail squid is captured and sold in small fisheries, but as the data on the distribution and population dynamics of this species are very poorly known, there is no way to say whether it is vulnerable or endangered in any way. As a result, it is listed as Data Deficient in the IUCN Red List.

– – –

ResearchBlogging.orgReferences:

Barratt, I., & Allcock, L. (2012). Euprymna berryi The IUCN Red List of Threatened Species DOI: 10.2305/IUCN.UK.2012-1.RLTS.T162599A925343.en

Wikipedia. Euprymna berryi. Available at <https://en.wikipedia.org/wiki/Euprymna_berryi&gt;. Access on March 8, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Leave a comment

Filed under Friday Fellow, mollusks, Zoology

The warmer the dangerouser, at least if you are a caterpillar

by Piter Kehoma Boll

Scientist all over the world agree that species diversity is higher at the tropics than at polar regions, i.e., the closer you get to the equator, more species you will find. But apart from making food webs more entangled, does it increase the overall number of interactions that species experience? Afterall, despite the increase in species richness, the population size usually decreases. For example, while there are hundreds of different tree species in the Amazon forest, the number of individuals of each species is much lower than the number of individuals of a species in a temperate forest in Europe.

In order to test whether an increase in species richness would also mean an increase in biotic interactions, a group of ecologists all over the world engaged in a worldwide experiment using nothing else but small fake caterpillars made of plasticine. The small models were placed in different areas from the polar regions to the equatorial regions and the number of attacks that they suffered were counted and grouped according to the type of predator, which was usually identifiable based on the marks left on the models.

170518143812_1_900x600

A fake caterpillar in Tai Po Kau, Hong Kong. Photo by Chung Yun Tak, extracted from ScienceDaily.

The results indicate that there is indeed an increase in predation rates towards the equator, as well as towards the sea level. Areas close to the poles or at high elevations have a smaller number of interactions. But even more interesting was the revelation that this change is really driven by small predators, especially arthropods such as ants. The rate of attacks by birds and mammals was fairly constant across the globe.

Such an evidence on the importance of arthropod predators at the tropics may make us reevaluate our ideas on the evolution of species in such places, as the main concern for small herbivores such as caterpillars in tropical forests may not be birds, but ants. And this means a completely different way to evolve defense strategies.

– – –

ResearchBlogging.orgReference:

Roslin, T., Hardwick, B., Novotny, V., Petry, W., Andrew, N., Asmus, A., Barrio, I., Basset, Y., Boesing, A., Bonebrake, T., Cameron, E., Dáttilo, W., Donoso, D., Drozd, P., Gray, C., Hik, D., Hill, S., Hopkins, T., Huang, S., Koane, B., Laird-Hopkins, B., Laukkanen, L., Lewis, O., Milne, S., Mwesige, I., Nakamura, A., Nell, C., Nichols, E., Prokurat, A., Sam, K., Schmidt, N., Slade, A., Slade, V., Suchanková, A., Teder, T., van Nouhuys, S., Vandvik, V., Weissflog, A., Zhukovich, V., & Slade, E. (2017). Higher predation risk for insect prey at low latitudes and elevations Science, 356 (6339), 742-744 DOI: 10.1126/science.aaj1631

1 Comment

Filed under Ecology

Friday Fellow: Common Stinkhorn

by Piter Kehoma Boll

Today things are getting sort of pornographic again. Some time ago I introduced a plant whose flowers resemble a woman’s vulva, the asian pigeonwing, and now is time to look at something of the other sex. And what could be better than the shameless penis? That’s the translation of the scientific name of this mushroom, Phallus impudicus, whose common name in English is much more discrete: common stinkhorn.

Phallus_impudicus2

Standing proud and shameless. Photo by flickr user Björn S…*

Found throughout Europe and parts of North America in deciduous woods, the common stinkhorn is easily recognizable for its phallic shape and even more for its foul smell that resembles carrion. This odor attracts insects, especially flies, that carry the spores away. This is a different method from the one used by most fungi, which simply release the spores in the air. Some people may mistake the common stinkhorn for morels (genus Morchella) but the two are completely unrelated, being from different phyla.

Despite the foul smell, the common stinkhorn is edible, especially in its first stages of development, when it resembles an egg. Due to its phallic shape, it is also seen as an aphrodisiac in some culture, as it is common with genitalia-shaped lifeforms.

Phallus_impudicus3

The immature fruiting body of Phallus impudicus is the most commonly eaten form. Photo by Danny Steven S.*

The common stinkhorn seems to have some anticoagulant properties and can be used for patients susceptible to thrombosis in the veins, such as patients treating breast cancer.

– – –

ResearchBlogging.orgReferences:

Kuznecov, G., Jegina, K., Kuznecovs, S., & Kuznecovs, I. (2007). P151 Phallus impudicus in thromboprophylaxis in breast cancer patients undergoing chemotherapy and hormonal treatment The Breast, 16 DOI: 10.1016/s0960-9776(07)70211-4

SMITH, K. (2009). On the Diptera associated with the Stinkhorn (Phallus impudicus Pers.) with notes on other insects and invertebrates found on this fungus. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 31 (4-6), 49-55 DOI: 10.1111/j.1365-3032.1956.tb00206.x

Wikipedia. Phallus impudicus. Available at <https://en.wikipedia.org/wiki/Phallus_impudicus&gt;. Access on March 7, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

Leave a comment

Filed under Friday Fellow, Fungi

Friday Fellow: Spreading Earthmoss

by Piter Kehoma Boll

If you still think mosses are uninteresting lifeforms, perhaps you will change your mind after knowing the spreading earthmoss, Physcomitrella patens.

Found in temperate regions of the world, except for South America, but more commonly recorded in North America and Eurasia, the spreading earthmoss grows near water bodies, being one of the first species to colonize the exposed soil around pools of water. Although widely distributed, it is not a common species.

Physcomitrella_patens

The spreading earthmoss growing on mud. Photo by Hermann Schachner.

Since the beginning of the 1970s, the spreading earthmoss has been used as a model organism, especially regarding gene manipulation. Differently from what occurs in vascular plants, the dominant life phase in mosses is the gametophyte, an haploid organism, meaning it has only one copy of each chromosome in its cells. This is an ideal condition for the study of gene expression, as the activation or inactivation of a gene is not hindered by a second one in another copy of the chromosome in the same cell.

Physcomitrella_patens_ecotypes

Physcomitrella patens growing in the lab. Credits to the Lab of Ralf Reski.*

By controlling gene expression in the spreading earthmoss, researches can track the role of each one of them in the plant’s development. Comparing these data with that known from flowering plants, we can have a better understanding of how the plant kingdom evolved.

– – –

ResearchBlogging.orgReferences:

Cove, D. (2005). The Moss Physcomitrella patens Annual Review of Genetics, 39 (1), 339-358 DOI: 10.1146/annurev.genet.39.073003.110214

Schaefer, D. (2001). The Moss Physcomitrella patens, Now and Then PLANT PHYSIOLOGY, 127 (4), 1430-1438 DOI: 10.1104/pp.127.4.1430

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Leave a comment

Filed under Botany, Friday Fellow, Molecular Biology

Land snails on islands: fascinating diversity, worrying vulnerability

by Piter Kehoma Boll

The class Gastropoda, which includes snails and slugs, is only beaten by the insects in number of species worldwide, having currently about 80 thousand described species. Among those, about 24 thousand live on land, where they are a very successful group, especially on oceanic islands.

The Hawaiian Islands alone, for example, have more than 750 snail species and there are more than 100 endemic species in the small island of Rapa in the South Pacific. This diversity is much higher than that in any continental place, but the reason for that is not completely understood.

Mandarina

A land snail of the genus Mandarina, endemic to the Ogasawara Islands, Japan. Photo by flickr user kmkmks (Kumiko).*

One of the most likely explanations for this huge diversity on islands is related to the lack of predators. The most common predators of snails include birds, mammals, snakes, beetles, flatworms and other snails. Most of those are not present in small and isolated islands, which allows an increase in land snail populations in such places. Without too much dangers to worry about, the community of land snails n islands can explore a greater range of niches, eventually leading to speciation.

Unfortunately, as always, the lack of danger leads to recklessness. Without predators to worry about, insular land snails tend to lay fewer eggs than their mainland relatives. If there is no danger of having most of your children eaten, why would you have that many? It is better to lay larger eggs, putting more resources on fewer babies, and so assure that they will be strong enough to fight against other snail species. Afterall, the large number of species in such a small place as an island likely leads to an increased amount of competition between species.

But why is this recklessness? Well, because you never known when a predator will arrive. And they already arrived… due to our fault.

The diversity of insular land nails was certainly affected by habitat loss promoted by humans, but also by predators that we carried with us to the islands, whether intentionally or not. These predators include rats, the predatory snail Euglandina rosea and the land flatworm Platydemus manokwari, the latter being most likely the worst of all.

800px-platydemus_manokwari

The flatworm Platydemus manokwari in the Ogasawara Islands. Photo by Shinji Sugiura.

This flatworm arrived at the Chichijima Island, part of the Ogasawara Islands in the Pacific Ocean, in the early 1990s and in about two decades it led most land snail species on the island to extinction and many more are about to face the same fate on this island and on others. Not being prepared for predators, these poor snails cannot reproduce fast enough to replace all individuals eaten by the flatworm.

We have to act quickly if we want to save those that are still left.

See also: The New Guinea flatworm visits France – a menace.

– – –

ResearchBlogging.orgReferences and further reading:

Chiba, S., & Cowie, R. (2016). Evolution and Extinction of Land Snails on Oceanic Islands. Annual Review of Ecology, Evolution, and Systematics, 47 (1), 123-141 DOI: 10.1146/annurev-ecolsys-112414-054331

Sugiura, S., Okochi, I., & Tamada, H. (2006). High Predation Pressure by an Introduced Flatworm on Land Snails on the Oceanic Ogasawara Islands. Biotropica, 38 (5), 700-703 DOI: 10.1111/j.1744-7429.2006.00196.x

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

Leave a comment

Filed under Conservation, Extinction, mollusks, Zoology

Friday Fellow: Toxo

by Piter Kehoma Boll

If I had to bet on a parasite that you who are reading this probably have in your body, I’d go for today’s fellow, the protist Toxoplasma gondii, sometimes simply called toxo.

Found worldwide, the toxo is one of the most common parasites in humans, with estimations that about half of the world’s population is infected. Fortunately, this creature usually occurs in a latent form and does not offer great risks, but eventually it may develop into a more serious condition called toxoplasmosis, especially in people with weakened immunity.

But let’s take a closer look at this tiny fellow.

Toxoplasma_gondii_oocyst

Oocysts of Toxoplasma gondii. This is the form found in the environment and that can start an infection in your body.

The toxo is a protist belonging to the phylum Apicomplexa, a group of parasitic alveolates that also includes the agent that causes malaria. Although traditionally considered a protozoan, the apicomplexans are closely related to dinoflagellates (which are generally considered as a group of algae). They have a unique organelle called apicoplast, which they use to penetrate a host cell. The apicoplast is derived from a plastid (such as the chloropast), so in a certain way we can say that the apicomplexans are algae that evolved into intracellular parasites!

Toxoplasma_gondii_tachy

Tachyzoites of Toxoplasma gondii stained with Giesma from the peritoneal fluid of a mouse.

The life cycle of the toxo is kind of complex. Let’s start with the inactive form called oocyst, which may be found in the environment. If a warm-blooded animal ingests an oocyst, it will “burst” inside the gut of the animal and release several “quick-moving” forms called tachyzoites. The tachyzoites invade almost any cell of the body and multiply asexually inside it until the cell dies and release them, allowing them to infect more and more cells. When invading the brain, liver and muscles, the tachyzoites usually differentiate into cysts that become inactive. In this stage, the only thing that the toxo wants is that a cat (any species of the family Felidae) eats the host. It may even change the host’s behavior in order to make it bolder and more easily accessible to predators.

Toxoplasma_gondii_cyst

A cyst of Toxoplasma gondii that forms in the muscles, brain and liver of any warm-blooded anymal. All the cyst wants is to be eaten by a cat!

Now let’s assume that a cat ate the host (that was likely a bird or mouse). Inside the cat’s gut, the cyst burst and releases several “slow-moving” forms called bradyzoites. This form invades the epithelial cells of the cat’s intestine and multiply asexually inside them. Eventually, the bradyzoites differentiate into either tachyzoites or gametocytes (sperm- and egg-like cells). When two gametocytes fuse, they form a zygote that matures into an oocyst and is released into the environment, restarting the cycle.

Toxoplasma_life_cycle

The complex life cycle of Toxoplasma gondii. Credits to Mariana Ruiz Villarreal.

As always, the lifecycle of parasites is a wonderful adventure!

– – –

ResearchBlogging.orgReferences:

Tenter, A., Heckeroth, A., & Weiss, L. (2000). Toxoplasma gondii: from animals to humans International Journal for Parasitology, 30 (12-13), 1217-1258 DOI: 10.1016/S0020-7519(00)00124-7

Wikipedia. Toxoplasma gondii. Available at <https://en.wikipedia.org/wiki/Toxoplasma_gondii&gt;. Access on March 6, 2017.

Leave a comment

Filed under Disease, Friday Fellow, protists