Monthly Archives: October 2017

Friday Fellow: Sea Sparkle

by Piter Kehoma Boll

If you live near the sea or visit it often, you may sometimes have seen the waves glowing while breaking on the shore at night. This beautiful phenomenon is caused by the presence of bioluminescent microorganisms, the most famous of which is our newest Friday Fellow. Scientifically known as Noctiluca scintillans, it is populary known as the sea sparkle.

Bioluminescent_sea

Waves glowing blue at Atami, Japan. Photo by Kanon Serizawa.*

The sea sparkle is a dinoflagellate and is common worlwide. It is an heterotrophic flagellate and feeds on many other small organisms, such as bacteria, diatoms, other dinoflagellates and even eggs of copepods and fish. Having only a small tentacle and a rudimentar flagellum, the sea sparkle is unable to swim, making it a very unusual predator. Studies have suggested that it preys by bumping into the prey during water flow or by ascending or descending in the water column due to density differences. It can also produce a string of mucus attached to the tentacle that entagles prey and brings them to their horrible end.

noctiluca_scintillans_unica

A single Noctiluca scintillans. Photo by Maria Antónia Sampayo, Instituto de Oceanografia, Faculdade Ciências da Universidade de Lisboa.**

In temperate waters, the sea sparkle is an exclusive predator, but in tropical water it may maintain some of the ingested algae alive and use them in a symbiotic association to receive nutrients from photosynthesis. Diatoms of the genus Thalassiosira appear to be one of its favorites.

The most striking feature of the sea sparkle, however, is its bioluminescence, from which it receives its names. The light that it emits is produced by a chemical reaction between a compound called luciferin and an enzyme, called luciferase, that oxidizes it, causing it to emit light. The phenomenon is clearly visible on the sea during blooms of the dinoflagellate, which usually happen right after a bloom of its food.

– – –

References:

Kiørbe, T.; Titelman, J. (1998) Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillansJournal of Plankton Research 20(8): 1615–1636.

Quevedo, M.; Gonzalez-Quiros, R.; Anadon, R. (1999) Evidence of heavy predation by Noctiluca scintillans on Acartia clausi (Copepoda) eggs of the central Cantabrian coast (NW Spain). Oceanologica Acta 22(1): 127–131.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Advertisements

1 Comment

Filed under Algae, Friday Fellow, protists

Friday Fellow: Flat-Leaved Scalewort

by Piter Kehoma Boll

Time and again, if we want to understand all the nuances of life on Earth, we have to look to the small things that live close to the ground or on the bark of the trees. And one of this small creatures is the flat-leaved scalewort, Radula complanata.

Growing on rocks or trees, the flat-leaved scalewort is quite common in the northern hemisphere, especially in North America and Eurasia, and belongs to the diverse but hidden group of the liverworts.

36401_orig

Radula complanata growing on the trunk of an ash tree (Fraxinus excelsior) in England. Credits to BioImages – the Virtual Fieldguide (UK).*

In Europe, the flat-leaved scalewort occurs in dense forests, where it finds shelter to the direct exposure to the sun. In this forests, it shows a clear preference for growing on broad-leaved trees and shrubs, such as the goat willow Salix caprea and its hybrids. It usually grows friendly with other epiphytic liverworts on the same tree, although not much clustered.

Although usually harmless, the flat-leaved scalewort can cause skin irritation (more precisely, allergenic contact dermatitis) when handled, which seems to be related to the presence of certain alcaloids, such as bibenzyls, in its tissues.

– – –

References:

Asakawa, Y.; Kusube, E.; Takemoto, T.; Suire, C. (1978) New Bibenzyls from Radula complanataPhytochemistry, 17: 2115–2117. https://dx.doi.org/10.1016/S0031-9422(00)89292-4

Heylen, O.; Hermy, M. (2008) Age structure and Ecological Characteristics of Some Epiphytic Liverworts (Frullania Dilatata, Metzgeria Furcata and Radula Complanata). The Bryologist, 111(1): 84-97. https://doi.org/10.1639/0007-2745(2008)111[84:ASAECO]2.0.CO;2

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.

Leave a comment

Filed under Botany, Friday Fellow

Friday Fellow: Scaly Lepidodermella

by Piter Kehoma Boll

From the longest animal seen last week, today we will see one of the shortest. Measuring only 190 µm in length, our fellow is called Lepidodermella squamata, which I turned into a “common” name as scaly lepidodermella.

797px-lepidodermella_squamatum

A specimen of Lepidodermella squamata. Photo by Giuseppe Vago.*

The scaly lepidodermella belongs to the phylum Gastrotricha, commonly known as hairybacks, which are all microscopic and distributed worldwide in aquatic environments. Found in freshwater environments worlwide, the scaly lepidodermella has the trunk covered in scales, hence its name. It feeds on other small organisms, such as algae, bacteria and yeast, as well as on detritus.

One of the most interesting aspects of the biology of the scaly lepidodermella is its reproduction. Although being hermaphrodite, this species usually produces only four eggs during its lifetime and those develop without fertilization. This means that the reproduction is parthenogenetic. However, strangely enough, the individuals become sexually mature after laying those four eggs, producing sperm and sometimes laying additional eggs, but most of those never hatch or, when they do, they produce offspring that rarely manage to become adults. Sexual reproduction, therefore, would be theoretically possible, but it has never been observed and there is no known means by which sperm could be transferred from one individual to the other.

This late sexual development may therefore be nothing but a vestige of its sexual past. Perhaps in future generations these traits will disappear and nothing but the perthenogenetic reproduction will last.

– – –

Like us on Facebook!

– – –

References:

Hummon, M. R. (1984) Reproduction and sexual development in a freshwater gastrotrich 1. Oogenesis of parthenogenetic eggs (Gastrotricha). Zoomorphology 104(1): 33–41. https://dx.doi.org/10.1007/BF00312169

Hummon, M. R. (1986) Reproduction and sexual development in a freshwater gastrotrich 4. Life history traits and the possibility of sexual reproduction. Transactions of the American Microscopical Society 105(1): 97–109. https://dx.doi.org/10.2307/3226382

Wikipedia. Lepidodermella squamata. Available at <https://en.wikipedia.org/wiki/Lepidodermella_squamata&gt; Access on September 3, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

1 Comment

Filed under Friday Fellow, worms, Zoology

An extinct frog that is still living

by Piter Kehoma Boll

Hybrids, as you probably know, are organisms that arise from the mating of two individuals of different species. A mule, for example, is a well known hybrid between a horse and a donkey. Hybrids are usually sterile, although not all of them are, and some of them have a very peculiar way to continue to exist by using a process called hybridogenesis.

Hybrids that rely on hybridogenesis function in the following way: there are two original species, let’s call them A and B. When they copulate with each other, they produce a hybrid offspring, AB, which has half of the genes from one parent and half from the other. In “normal” hybrids, such creatures are completely sterile, unable to produce viable gametes, or can give rise to a new hybrid species by producing mixed gametes. However, in this peculiar kind of hybrids, called kleptons, things work differently.

800px-rana_ridibunda_ii

Pelophylax kl. hispanicus, the holder of a treasure. Photo by Andreas Thomsen.*

When kleptons are producing gametes, they never recombine the genomes of the two parents, but rather exclude the genome of one of them and produce gametes that contain the genome of the other parent. For example, the hybrid AB produces only A gametes, while the B genome is excluded. This means that if AB mates with a partner of the species A, the offspring will be formed by pure A individuals. If mating with B, the offspring will contain only new AB hybrids.

hybridogenesis_in_water_frogs

The edible frog Pelophylax kl. esculentus is a klepton formed by breeding P. lessonae and P. ridibundus. The klepton only produces gametes of P. ridibundus, eliminating the genome of P. lessonae during meiosis. (Photo by Wikimedia user Darekk2).**

This mode of reproduction is very common in frogs of the genus Pelophylax, as the example seen in the picture above. Another interesting point about kleptons is that they are usually unable to mate with another klepton. They rely one the parent species to reproduce, therefore “parasitizing” them.

A recently published paper on Pelophylax frogs reports a peculiar case in which one of the parent species is extinct. The klepton, known as Pelophylax kl. hispanicus, is the result of P. bergeri crossing with a now extinct species of Pelophylax. The case is that the gametes that P. kl. hispanicus produce are of the extinct species, but they can only fertilize gametes of P. bergeri. In other words, we could say that the extinct species is still alive inside the klepton, relying on P. bergeri to pass to the next generations.

41598_2017_12942_fig1_html

Pelophylax kl. hispanicus is a klepton that maintains the genome of an extinct species alive. Image extracted from Dubey & Dufresnes (2017).**

The authors suggest that perhaps we could find a way to bring the extinct species back, separated from P. bergeri. Although the result of crossing two P. kl. hispanicus is an sterile offspring, they think that continuous trials may end up revealing an eventual fertile offspring. Is it worth trying? Perhaps. But anyway, this is one more astonishing feature of nature, don’t you agree?

How many more extinct species may be living in a similar way, trapped in a hybrid?

– – –

Like us on Facebook!

– – –

References:

Wikipedia. Hybridogenesis in water frogs. Available at <https://en.wikipedia.org/wiki/Hybridogenesis_in_water_frogs&gt;. Access on October 12, 2017.

Dubey, S.; Dufresnes, C. (2017) An extinct vertebrate preserved by its living hybridogenetic descendant. Scientific Reports 7: 12768. https://dx.doi.org/10.1038/s41598-017-12942-y

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Leave a comment

Filed under Evolution, Extinction

Friday Fellow: Bootlace Worm

by Piter Kehoma Boll

Long ago I presented some of the extremes of the animal world, including the largest, the cutest and the leggiest. Now it’s time to introduce another extreme: the longest. And this animal is so long that it seems impossible. Its name: Lineus longissimus, commonly known as bootlace worm. Its length: up to 55 meters.

lossless-page1-399px-nemertean_lineus_longissimus-tif

An entangled bootlace worm. Photo by Bruno C. Vellutini.*

The bootlace worm is a member of the phylum Nemertea, commonly known as ribbon worms, and is found along the shores of the Atlantic Ocean in Europe. Most of the time, the worm is contracted, forming what looks like a heap of entagled wool threads that has no more than 30 cm from side to side. Although there are reports of specimens measuring more than 50 m, most of them are much shorter, with 30 m being already a very large size. Its width is of about 0.5 cm, so it is almost literally a long brown thread.

large

Lineus longissimus photographed in Norway. Photo by Guido Schmitz.**

As all nemerteans, the bootlace worm is a predator and hunts its prey between the rocks on sandy shores, stunning them with its long poisonous proboscis and then swallowing them whole. Soft and fragile, the bootlace worm has no way to protect itself from predators using any physical defense, but it is known to have a series of different toxins on its epidermis, including some similar to the deadly pufferfish poison tetrodotoxin (TTX) that is produced by bacteria living in the mucus that surrounds the body of the worm.

Now, before leaving, take a look at this video of a bootlace worm swallowing a polychaete:

– – –

References:

Cantell, C.-E. (1976) Complementary description of the morphology of Lineus longissimus (Gunnerus, 1770) with some remarks on the cutis layer in heteronemertines. Zoologica Scripta 5:117–120. https://dx.doi.org/10.1111/j.1463-6409.1976.tb00688.x

Carroll, S.; McEvoy, E. G.; Gibson, R. (2003) The production of tetrodotoxin-like substances by nemertean worms in conjunction with bacteria. Journal of Experimental Marine Biology and Ecology 288: 51–63. https://dx.doi.org/10.1016/S0022-0981(02)00595-6

Gittenberger, A.; Schipper, C. (2008) Long live Linnaeus, Lineus longissimus (Gunnerus, 1770) (Vermes: Nemertea: Anopla: Heteronemertea: Lineidae), the longest animal worldwide and its relatives occurring in The Netherlands. Zoologische Mededelingen. Leiden 82: 59–63.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Leave a comment

Filed under Friday Fellow, worms