Category Archives: Fungi

Friday Fellow: Yellow Morel

by Piter Kehoma Boll

Time for our next fungus, and this time it is a delicious one, or at least I think so, as I have never eaten it. Scientifically known as Morchella esculenta, its common names include common morel, yellow morel, true morel or simply morel.

576px-old_holiday_shot_of_morchella_esculenta_28gb3d_morel_mushroom2c_d3d_speise-morchel2c_nl3d_gewone_morielje29_-_panoramio

A fruiting body of the yellow morel in France. Photo by Henk Monster.*

Common in North America and Europe, as well as in some parts of Asia, especially in wooden areas, the yellow morel is a popular edible fungus of the phylum Ascomycota, so it is not closely related to the more common mushrooms, but it is a relative of the truffles, for example.

Morels are usually easily recognizable due to their peculiar appearance. Appearing during spring, their fruiting body is more or less oval in shape, covered with irregular pits and ridges, and hollow.

450px-morchella-esculenta-001

An open morel showing its hollowness. Photo by Wikimedia user 00Amanita00.*

Although being one of the most highly prized mushrooms, morels can give you some undesirable effects, such as gastrointestinal problems, if eaten raw or if too old. So, it is advisable to eat young mushrooms and at least blanching them before consumption. As they are hollow, it is common to eat them stuffed with vegetables or meat.

Pharmacological and biochemical studies revealed that the yellow morel has many healthy properties, such as the presence of antioxidants and substances that stimulate the immune system, as well as anti-inflammatory and antitumour properties. It is certainly a food that is worth to include in our diet, too bad that is tends to be kind of expensive…

– – –

Like us on Facebook!

– – –

References:

Duncan, C. J. G.; Pugh, N.; Pasco, D. S.; Ross, S. A. (2002) Isolation of galactomannan that enhances macrophage activation from the edible fungs Morchella esculentaJournal of Agricultural and Food Chemistry, 50(20): 5683–5695. DOI: 10.1021/jf020267c

Mau, J.-L.; Chang, C.-N.; Huang, S.-J.; Chen, C.-C. (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chemistry, 87(1): 111-118.
https://doi.org/10.1016/j.foodchem.2003.10.026

Nitha, B.; Meera, C. R.; Janardhanan, K. K. (2007) Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculentaCurrent Science, 92(2): 235–239.

Wikipedia. Morchella esculenta. Available at < https://en.wikipedia.org/wiki/Morchella_esculenta >. Access on October 31, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Advertisements

1 Comment

Filed under Friday Fellow, Fungi

Friday Fellow: Brown spot of maize

by Piter Kehoma Boll

I’ll continue the parasite trend from last week, but this time shifting from human parasite to maize parasite, and from a prokaryotic to a eukaryotic parasite. So let’s talk about Physoderma maydis, commonly known as the brown spot of maize or brown spot of corn.

The Brown spot of maize is a fungus of the division Blastocladiomycota that infects corn (or maize) plants. Its common name comes from the fact that it causes a series of brown spots on the leaves of an infected plant.

1234218

The brown spots seen on this corn leaf are due to an infection by Physoderma maydis. Credits of the photo to Clemson University – USDA Cooperative Extension Slide Series.*

The life cycle of the brown spot of maize is as complex as that of many fungi. The infection of the plants occur through spores that remain in the soil during winter and are carried to the host by the wind, germinating in the rainy season. The germinated spores produce zoospores, flagellated spores able to swim. Swiming through the maize leaf, the zoospores infect single cells and produce zoosporangia at the surface of the leaf. The zoosporangia release new zoospores that infect new cells. In late spring and summer, the zoospores produce a thallus growing deep inside the maize leaf that infects many cells and produces thick-walled sporangia. After the plants dies and the leaves become dry and broke, the sporangia are released and reach the soil, where they wait for the next spring to restart the cycle.

The brown spot of maize is a considerable problem for maize crops in countries with abundant rainfall. Heavy infections may kill the maize plant or severely reduce its fitness before the ears are ready to be harvested. Although fungicides may help in slowing down the infectio throughout the crops, one of the most efficient ways to reduce the damage is to destroy, usually by fire, the remains of the last harvest.

– – –

References:

Olson, L. W.; Lange, L. (1978) The meiospore of Physoderma maydis. The causal agent of Physoderma disease of maize. Protoplasma 97: 275–290. https://dx.doi.org/10.1007/BF01276699

Plantwise Knowledge Bank. Brown spot of corn (Physoderma maydis). Available at: < http://www.plantwise.org/KnowledgeBank/Datasheet.aspx?dsid=40770&gt;. Access on Agust 7, 2017.

Robertson, A. E. (2015) Physoderma brown spot and stalk rot. Integrated Crop Management News: 679. http://lib.dr.iastate.edu/cropnews/679/

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Leave a comment

Filed under Disease, Friday Fellow, Fungi

Friday Fellow: Baker’s Yeast

by Piter Kehoma Boll

Living along humans for centuries, today’s Friday Fellow is certainly one of the most beloved fungi. Scientifically known as Saccharomyces cerevisiae, its common names in English include baker’s yeast, brewer’s yeast or ale’s yeast.

800px-saccharomyces_cerevisiae_sem

Saccharomyces cerevisiae under the scanning electron microscope. Photo by Mogana Das Murtey and Patchamuthu Ramasamy.*

Under the microscope, the cells of this single-celled species are ellipsoid or sphere-shaped and usually show small buds from new cells growing from the larger one. But you may have seen this species being sold as tablets or grains in the supermarket, as they are used to make bread and many alcoholic bevarages, such as wine and beer, but the baker’s yeast is much more interesting than just that.

450px-d094d180d0bed0b6d0b6d0b8_d181d183d185d0b8d0b5_d0b1d18bd181d182d180d0bed0b4d0b5d0b9d181d182d0b2d183d18ed189d0b8d0b5_-_rapid-rise_yeast

Grains of dried but yet alive baker’s yeast as it is sold commercially.

The cells of the baker’s yeast occur naturally on ripe fruits, such as grapes, and this was likely the original source of the strains currently cultivated by humans. The yeast reaches the fruits through many wasp species that have it growing in their intestines, an ideal environment for the fungus’ sexual reproduction.

As it is easily cultivated in the lab and has a short generation time, the baker’s yeast has become one of the most important model organisms in current biological studies. It was, in fact, the first eukaryotic organism to have its whole genome sequenced more than 20 years ago.

Saccharomyces_cerevisiae

Saccharomyces cerevisiae growing on solid agar in the lab. Photo by Conor Lawless.**

More than giving us food and drink, this amazing yeast has increased our understanding of gene expression, DNA repair and aging, among many other things. Live long the yeast!

– – –

References:

Giaever, G.; Chu, A. M.; Ni, L.; Connelly, C. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 (6896): 387-391.

Herskowitz, I. (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiological Reviews 52 (4): 536-553.

Wikipedia. Saccharomyces cerevisiae. Available at < https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae >. Access on July 25, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
**Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Friday Fellow, Fungi

Friday Fellow: Gray Mold

by Piter Kehoma Boll

Today’s Friday Fellow will show you how beauty is only a matter of perspective. Being an ascomycete fungus, it is commonly known as gray mold and is usually found growing on decaying vegetables, especially fruits such as the strawberry in the photo below:

Botrytis_cinerea1

Gray mold growing on a strawberry. Most people would not see it as a beautiful image. Photo by Wikimedia user Rasbak.*

The gray mold has a controversial biological nomenclature, as many other fungi. The most common name is Botrytis cinerea used for its asexual stage (anamorph), which is the most common. Its sexual stage (teleomorph) is known as Botryotina fuckeliana. I guess this issue, which was common in naming fungi with rare or unknown occurrences of sexual stage, has already been settled, but as I’m not a taxonomist of fungus, I cannot speak much on the subject.

More than only having a controversial name, this fungus has also a controversial interaction with humans. It is a notable pest in wine grapes and may lead to two different infections on them. One of those is called “grey rot” and happens under wet conditions, leading to the loss of the grapes. The other is called “noble rot” and is a beneficial form of the infection that happens when the wet condition is followed by a dry one and produce a fine and sweet vine due to the concentration of sugars in the grape.

Out of the vine world, however, the gray mold is not something that you want growing on your crops. As as it attacks more than 200 species, many of them being important food crops, there is a big interest in developing strategies to reduce the damage it causes. And these strategies include the use of pesticides, plant essential oils or even other organisms that may parasitize the gray mold.

But one cannot deny that if you look closer, even the gray mold is beautiful:

Botrytis_cinerea

A beautiful tiny forest of gray mold on a strawberry. Photo by Macroscopic Solutions.**

– – –

ResearchBlogging.orgReferences:

Wikipedia. Botrytis cinerea. Available at <https://en.wikipedia.org/wiki/Botrytis_cinerea&gt;. Access on June 2, 2017.

WILLIAMSON, B., TUDZYNSKI, B., TUDZYNSKI, P., & VAN KAN, J. (2007). Botrytis cinerea: the cause of grey mould disease Molecular Plant Pathology, 8 (5), 561-580 DOI: 10.1111/j.1364-3703.2007.00417.x

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommerical 2.0 Generic License.

Leave a comment

Filed under Friday Fellow, Fungi

Friday Fellow: Common Stinkhorn

by Piter Kehoma Boll

Today things are getting sort of pornographic again. Some time ago I introduced a plant whose flowers resemble a woman’s vulva, the asian pigeonwing, and now is time to look at something of the other sex. And what could be better than the shameless penis? That’s the translation of the scientific name of this mushroom, Phallus impudicus, whose common name in English is much more discrete: common stinkhorn.

Phallus_impudicus2

Standing proud and shameless. Photo by flickr user Björn S…*

Found throughout Europe and parts of North America in deciduous woods, the common stinkhorn is easily recognizable for its phallic shape and even more for its foul smell that resembles carrion. This odor attracts insects, especially flies, that carry the spores away. This is a different method from the one used by most fungi, which simply release the spores in the air. Some people may mistake the common stinkhorn for morels (genus Morchella) but the two are completely unrelated, being from different phyla.

Despite the foul smell, the common stinkhorn is edible, especially in its first stages of development, when it resembles an egg. Due to its phallic shape, it is also seen as an aphrodisiac in some culture, as it is common with genitalia-shaped lifeforms.

Phallus_impudicus3

The immature fruiting body of Phallus impudicus is the most commonly eaten form. Photo by Danny Steven S.*

The common stinkhorn seems to have some anticoagulant properties and can be used for patients susceptible to thrombosis in the veins, such as patients treating breast cancer.

– – –

ResearchBlogging.orgReferences:

Kuznecov, G., Jegina, K., Kuznecovs, S., & Kuznecovs, I. (2007). P151 Phallus impudicus in thromboprophylaxis in breast cancer patients undergoing chemotherapy and hormonal treatment The Breast, 16 DOI: 10.1016/s0960-9776(07)70211-4

SMITH, K. (2009). On the Diptera associated with the Stinkhorn (Phallus impudicus Pers.) with notes on other insects and invertebrates found on this fungus. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 31 (4-6), 49-55 DOI: 10.1111/j.1365-3032.1956.tb00206.x

Wikipedia. Phallus impudicus. Available at <https://en.wikipedia.org/wiki/Phallus_impudicus&gt;. Access on March 7, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

Leave a comment

Filed under Friday Fellow, Fungi

Friday Fellow: Amphibian chytrid fungus

by Piter Kehoma Boll

Today I’m bringing you a species that is probably one of the most terrible ones to exist today, the amphibian chytrid fungus, Batrachochytrium dendrobatidis, also known simply as Bd.

batrachochytrium_dendrobatidis

Several sporangia of Batrachochytrium dendrobatidis (spherical structures) growing on a freshwater arthropod. Photo by AJ Cann.*

The amphibian chytrid fungus, as its name says, is a chytrid, a fungus of the division Chytridiomycota, which include microscopic species that usually feed by degrading chitin, keratin in other such materials. In the case of the amphibian chytrid fungus, it infects the skin of amphibians and feeds on it. It grows through the skin forming a network of rhizoids that originate spherical sporangia that contains spores.

The infection caused by the amphibian chytrid fungus is called chytridiomycosis. It causes a series of symptoms, including reddening of the skin, lethargy, convlusions, anorexia and excessive thickening and shedding of the skin. This thickening of the skin leads to problems in taking in nutrients, releasing toxins and even breathing, eventually leading to death.

chytridiomycosis

An individual of the species Atelopus limosus infected by the amphibian chytrid fungus. Photo by Brian Gratwicke.**

Since its discovery and naming in 1998, the amphibian chytrid fungus has devastated the populations of many amphibian species throughout the world. Some species, such as the golden toad and the Rabb’s fringe-limbed treefrog, were recently extinct by this terrible fungus. This whole drastic scenario is already considered one of the most severe examples of Holocene extinction. The reason for such a sudden increase in the infections is unknown, but it may be related to human impact on the environment.

We can only hope to find a way to reduce the spread of this nightmare to biodiversity.

– – –

ResearchBlogging.org
References:

Fisher, M., Garner, T., & Walker, S. (2009). Global Emergence of Batrachochytrium dendrobatidis and Amphibian Chytridiomycosis in Space, Time, and Host Annual Review of Microbiology, 63 (1), 291-310 DOI: 10.1146/annurev.micro.091208.073435

Wikipedia. Batrachochytridium dendrobatidis. Available at <https://en.wikipedia.org/wiki/Batrachochytrium_dendrobatidis&gt;. Access on March 4, 2017.

Wikipedia. Chytridiomycosis. Available at <https://en.wikipedia.org/wiki/Chytridiomycosis&gt;. Access on March 4, 2017.

Wikipedia. Decline in amphibian populations. Available at <https://en.wikipedia.org/wiki/Decline_in_amphibian_populations&gt;. Access on March 4, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Disease, Extinction, Friday Fellow, Fungi

Friday Fellow: Scarlet Elf Cup

por Piter Kehoma Boll

If you like to pay attention on mushrooms growing on the forest soil, you may have found this little fellow sometimes, especially if you live in the Northern Hemisphere. Scientifically known as Sarcoscypha coccinea, its common names include ruby elfcup, scarlet elf cup, scarlet elf cap, or simply scarlet cup.

The scarlet elf cup is an ascomycete, so it is more closely related to morels and truffles than to more famous gilled umbrella-shaped mushrooms. Its cup-shaped fruiting body has a bright red color on the inside and a white color on the outside. It can be found growing on decayed wood in forests of North America and Europe, although it has also been recorded in Australia and Chile.

sarcoscypha_coccinea

Beautiful scarlet elf cups growing on a a fallen log. Photo by geograph user ceridwen*

The fruiting bodies of the scarlet elf cup may vary depending on the environmental conditions. Usually those growing on buried wood in places protected from wind are the greatest, while those growing on wood above the ground and being exposed to wind are usually smaller. There is no agreement on whether the fruiting bodies are edible or not. Some authors consider it edible, while other do not recomend its ingestion. However, there are some records of people eating it, and it is also used as a medicine by Native American peoples, such as the Oneida people.

– – –

References:

EOL. Encyclopedia of Life. Sarcoscypha coccinea. Available at < http://eol.org/pages/1009245/overview >. Access on March 1, 2017.

Wikipedia. Sarcoscypha coccinea. Available at <https://en.wikipedia.org/wiki/Sarcoscypha_coccinea >. Access on March 1, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Friday Fellow, Fungi