Category Archives: Paleontology

Shaking dinosaur hips and messing with their heads

by Piter Kehoma Boll

This week brought astonishing news regarding the phylogeny of dinosaurus, as you perhaps have heard or read. New anatomical evidences have completely rebuilt the basis of the dinosaur family tree and I’m here to explain a little bit of what happened.

As we all know, Dinosaurs include a great variety of beasts, from the meat-eating theropods to the long-necked sauropods and from the horned ceratopsians to the armored ankylosaurs, among many others.

largestdinosaursbysuborder_scale

Silhouette of a human compared to the largest known dinosaurs of each major group. Picture by Matt Martyniuk.*

For more than a century now, dinosaurus have been divided into two groups, called Ornithischia and Saurischia. Ornithischia (“bird-hipped”) includes dinosaurus whose pelvic bones are more similar to what is found in birds, with a pubis directed backward. Saurischia (“lizard-hipped”), on the other hand, have a pubis directed forward, as in reptiles in general. This grouped the theropods and the sauropods in the same group as Saurischia while other dinosaurus were grouped as Ornithischia. But birds are actually theropods, thus being lizard-hipped dinosaurus and not bird-hipped dinosaurus! Confusing, isn’t it? So let’s take a look at their hips:

Pelvic_bones

Comparison of the hips of a crocodile (Crocodylus), a sauropod (Diplodocus), a non-avian theropod (Tyrannosaurus), a bird (Apteryx), a thyreophoran (Stegosaurus), and an ornithopod (Iguanodon). Red = pubis; Blue = ischium; Yellow = ilium. Picture by myself, Piter K. Boll.**

As you can see, the primitive state, found in crocodiles, sauropods and early theropods, is a pubis pointing forward. A backward-pointing pubis evolved at least twice independently, both in more advanced theropods (such as birds) and the ornithischian dinosaurus. But could we be so certain that Tyrannosaurus and Diplodocus are more closely related to each other (forming a clade Saurischia) just because of their hips? Afterall, this is a primitive hip, so it is very unlikely to be a synapomorphy (a shared derived character). Nevertheless, it continued to be used as a character uniting sauropods and theropods.

A new paper published by Nature this week, however, showed new evidences that point to a different relationship of the groups. After a detailed analysis of the bone anatomy, Matthew G. Baron, David B. Norman and Paul M. Barrett have found 20 characters that unite theropods with ornithischians and not with sauropods. Among those we can mention the presence of a foramen (a hole) at the anterior region of the premaxillary bone that is inside the narial fossa (the depression of the bone that surrounds the nostril’s opening) and a sharp longitudinal ridge along the maxilla.

skulls

The skulls of both ornithischians and theropods (above) show an anterior premaxillary foramen in the narial fossa (shown in yellow) and and a sharp ridge on the maxilla (shown in green), as well as other characters that are not present in sauropodomorphs and herrerasaurids (below). Composition using original pictures by Carol Abraczinskas and Paul C. Sereno (Heterodontosaurus), Wikimedia user Ghedoghedo (Eoraptor and Herrerasaurus), and flickr user philosophygeek (Plateosaurus).**

In his blog Tetrapod Zoology, Dr. Darren Naish comments the new classification and points out some problems that arise with this new view. One of them is the fact that both theropods and sauropodomorphs have pneumatic (hollow) bones, while ornithischians do not. If the new phylogeny is closer to the truth, that means that pneumacity evolved twice independently or evolved once and was lost in ornithischians.

He also mentions that both ornithischians and theropods had hair-like or quill-like structures on their skin. In theropods this eventually led to feathers. Could this be another synapomorphy uniting these groups? Maybe… but when we think that pterosaurs also had “hairs”, one could also conclude that a “hairy” integumentary structure was already presented in the common ancestor of dinosaurus. In this case, perhaps, we only had not found it yet on sauropods. Now imagine a giant Argentinosaurus covered with feathers!

One concern that appeared with this new organization is whether sauropodomorphs would still be considered dinosaurs. The term “dinosaur” was coined by Richard Owen in 1842 to refer to the remains of the three genera known at the time, Iguanodon, Hylaeosaurus and Megalosaurus, the first two being ornithischians and the latter a theropod. As a consequence, the original definition of dinosaur did not include sauropods. Similarly, the modern phylogenetic definition of dinosaur was “the least inclusive clade containing Passer domesticus (the house sparrow) and Triceratops horridus“. In order to allow Brachiosaurus and his friends to continue sitting  with the dinosaurs, Baron et al. suggested to expand the definition to include Diplodocus carnegii. So, dinosaurus would be the least inclusive clade containing P. domesticusT. horridus and D. carnegii.

In this new family tree, the name Saurischia would still be used, but to refer only to the sauropodomorphs and some primitive carnivores, the herrerasaurids. The new clade formed by uniting theropods and ornithischians was proposed to be called Ornithoscelida (“bird-legged”), a name coined in 1870 to refer to the bird-like hindlimbs of both theropods and ornithopods (the subgroup of ornithischians that includes dinosaurs such as Iguanodon and the duck-billed dinosaurs).

What can we conclude with all that? Nothing will change if you are just a dinosaur enthusiast and do not care about what’s an ornithischian and a saurischian. Now if you are a phylogeny fan, as I am, you are used to sudden changes in the branches. Most fossils of basal dinosaurs are incomplete, thus increasing the problem to know how they are related to each other. Perhaps this new view will last, perhaps new evidence will change all over again the next week.

– – –

ResearchBlogging.orgReferences and further reading:

Baron, M., Norman, D., & Barrett, P. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution Nature, 543 (7646), 501-506 DOI: 10.1038/nature21700

Naish, D. (2017). Ornithoscelida Rises: A New Family Tree for DinosaursTetrapod Zoology.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Leave a comment

Filed under Evolution, Extinction, Paleontology, Systematics

Biological fight: kites, mites, quite bright plights

ResearchBlogging.orgby Piter Kehoma Boll

A recently described fossil from the Silurian Herefordshire Lagerstätte in the United Kingdom has called much attention.

A photo of the fossil itself. Image by Briggs et al., extracted from news.nationalgeographic.com

A photo of the fossil itself. Image by Briggs et al., extracted from news.nationalgeographic.com

The appearance of the creature was build by scanning the rock and creating a 3D reconstruction of the fossil. It revealed that the animal, obviously and arthropod, had several smaller creatures attached by long threads, like kites. The species was named Aquilonifer spinosus, meaning “spiny kite-bearer”.

A 3D reconstruction of what Aquilonifer and its kites would have looked like. Image by Briggs et al. extracted from sci-news.com

A 3D reconstruction of what Aquilonifer and its kites would have looked like. Image by Briggs et al. extracted from sci-news.com

The authors (Briggs et al., 2016) thought about three possibilities to explain the unusual “kites”. They could be parasites, phoronts (i.e., hitchhikers), or babies. The idea of parasites was discarded because such long threads separating them from the host would have made it difficult to feed properly. They also considered it unlikely to be a case of phoronts, i.e., a species that uses the host as a mean to move from one site to another, because there were too many of them and the host most likely would have removed them by using the long antennae.

Artistic impression of Aquilonifer spinosus by Andrey Atuchin.

Artistic impression of Aquilonifer spinosus by Andrey Atuchin.

The remaining option is that the kites were offspring. The mother (or father) would have attached them to itself in order do carry them around in a unique mode of brood care. The authors compare it to several other arthropod groups in which some species carry their babies around during their first days. They also consider that the animal could have delayed its molting process to avoid discarding the babies with the exoskeleton.

But can we be sure that this is the case? The entomologist Ross Piper thinks differently. He compares the kites to uropodine mites, in which the juveniles (deutonymphs) attatch themselves to beetles by long stalks in order to be transported from one food source to another. As there are marine mites, that could be the case. He also points out that the kites are scattered through the body, which would make them unlikely to be offspring, as such a distribution would only hinder the parent’s mobility.

Briggs at al. responded to Piper’s critique arguing that marine mites have only recently evolved and that Aquilonifer is very different from a terrestrial beetle. It was most likely a bentonic species, crawling on the ocean’s floor, and not a swimmer, so that it would not be a very good dispersal agent.

What do you think of it? I find it difficult to choose one side. Piper’s comparison with mites is interesting, but only as a way to suggest a convergent evolution. I cannot see how the kites would have been really mites or even arachnids. Now the argument on the kites’ position on the body is a good point. No other group of animals carries their young attached to long stalks spread all over the body. Furthermore, how would the parent properly place the juveniles there? I can only see it as a plausible way if the host were the father and the mother crawled over him to stick the eggs in place. Additionally, couldn’t they be true phoronts  that were benefitial to the host? The little fellows could benefit by moving around on the big pal and reaching new food sources while giving protection or other advantage in return. And regarding the delay in molting, I cannot see any evidence that there was any delay. We don’t know how long the kites remained there and perhaps after molting they could simply leave their little houses and build new ones on the host’s new skeleton.

We may never know the truth, but we can keep exchanging ideas.

– – –

References:

Briggs, D., Siveter, D., Siveter, D., Sutton, M., & Legg, D. (2016). Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care Proceedings of the National Academy of Sciences, 113 (16), 4410-4415 DOI: 10.1073/pnas.1600489113

Briggs, D., Siveter, D., Siveter, D., Sutton, M., & Legg, D. (2016). Reply to Piper: Aquilonifer’s kites are not mitesProceedings of the National Academy of Sciences, 113 (24) DOI: 10.1073/pnas.1606265113

Piper, R. (2016). Offspring or phoronts? An alternative interpretation of the “kite-runner” fossil Proceedings of the National Academy of Sciences, 113 (24) DOI: 10.1073/pnas.1605909113

Switek, B. 2016. This bizarre creature flew its babies like kites. National Geographic News. Available at < http://news.nationalgeographic.com/2016/04/160404-bizarre-creature-flew-babies-kites-arthropod-fossils-science/ >. Access on July 07, 2016.

1 Comment

Filed under Behavior, Evolution, Paleontology, Zoology

Biological fight: Should we bring mammoths back?

by Piter Kehoma Boll

Everybody knows the amazing large animals that are found in Africa and Southeast Asia. Elephants, giraffes, rhinos, hippos, horses, lions, tigers… such large creatures, mostly mammals, are usually called megafauna, the “large fauna”.

Mammals as big as the African bush elephant once roamed the Americas. Photo by flickr user nickmandel2006*.

Mammals as big as the African bush elephant once roamed the Americas. Photo by flickr user nickmandel2006*.

The Americas once had an astonishing megafauna too, full of mastodons, mammoths, giant sloths, giant armadillos and sabertooth tigers. Nowadays it is restricted to some bears and jaguars. What happened to the rest of them? Well, most went extinct at the end of the Pleistocene, around 11,ooo years ago.

South America once had mammals as big as an African bush elephant. Picture by Dmitry Bogdanov** (dibgd.deviantart.com)

South America once had mammals as big as an African bush elephant, such as the giant sloth. Picture by Dmitry Bogdanov** (dibgd.deviantart.com)

As humans already inhabited the Americas by this time, it was always speculated if humans had something to do with their extinction. It is true that nowadays hundreds, thousands of species are endangered due to human activities, so it is easy to think that humans are the best explanation for their extinction, but 10 thousands years ago the number of humans on the planet was thousands of times smaller than today and our technology was still very primitive, so it is unlikely that we could hunt a species to extinction by that period… if we were working alone.

No, I’m not talking about humans cooperating with aliens! Our sidekick was the famous climate change. Periods of extreme warming during the pleistocene seem to have had a strong impact on the populations of many large mammals and, with the aid of humans hunting them down and spreading like an invasive species, the poor giants perished.

Le Mammouth by Paul Jamin

Le Mammouth by Paul Jamin

This happened more than 10 thousand years ago, TEN THOUSAND YEARS.

In Africa, elephants and large carnivores are well known for their importance in structuring communities, especially due to their trophic interactions that shape other populations. The extinct American megafauna most likely had the same impact on the ecosystem. As a result, suggestions to restore this extinct megafauna has been proposed, either by cloning some of the extinct species or, more plausibly, by introduced extant species with a similar ecological role.

Svenning et al. (2015) review the subject and argue in favor of the reintroduction of megafauna to restore ecological roles lost in the Pleistocene, an idea called “Pleistocene rewilding” or “trophic rewilding”, as they prefer. They present some maps showing the current distribution of large mammals and their historical distribution in the Pleistocene, which they call “natural”. They also propose some species to be introduced to substitute the ones extinct, including replacements for species extinct as long as 30 thousand years ago. Now is this a good idea? They think it is and one of the examples used is the reintroduction of wolves in the Yellowstone National Park. But wolves were not extinct for millenia there, neither are they a different species that would replace the role of an extinct one.

A wolf pack in Yellowstone National Park

A wolf pack in Yellowstone National Park

Rubenstein & Rubenstein (2016) criticized the idea, arguing that we should focus on protecting the remaining ecosystems and not trying to restore those that were corrupted thousands of years ago. They also argue that using similar species may have unintended consequences. Svenning et al. answered that this is mere opinion and that a systematic research program on trophic rewilding should be developed. The reintroduction of horses in the New World and its non-catastrophic consequences is another point used to respond to the critiques.

So what’s your opinion? Should we bring mammoths, mastodonts, giant sloths and sabertooth tigers back? Should we introduce elephants and lions in the Americas to play the role that mastodonts and smilodonts had?

My opinion is no. The idea may seem beautiful, but I think it is actually fantastic, too fabulous and sensational. Horses may have come back to the Americas without bringing destruction, but we cannot be sure with anything, even with several theoretical and small-scale studies. We all know how often introducing species goes wrong, very wrong. Look at poor Australia and Hawaii, for instance. Furthermore, those giant mammals went extinct TEN THOUSAND YEARS AGO. Certainly ecosystems have adapted to their extinction. Life always finds a way. There are worse threats to those ecosystems to be addressed, such as their eminent destruction to build more cities and raise more cattle and crops.

Get over it. Mammoths are gone. Let’s try to save the elephants instead, but without bringing them to the Brazilian cerrado. They don’t belong there. They belong in the African savannah.

– – –

References:

Rubenstein, D. R.; Rubenstein, D. I. From Pleistocene to trophic rewilding: A wolf in sheep’s clothing. PNAS, 113(1): E1. DOI: 10.1073/pnas.1521757113

Svenning, J-C.; Pedersen, P. B. M.; Donlan, C. J.; Ejrnæs, R.; Faurby, S.; Galetti, M.; Hansen, D. M.; Sandel, B.; Sandom, C. J.; Terborgh, J. W.; Vera, F. W. M. 2016. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. PNAS, 113(4): 898-906. DOI: 10.1073/pnas.150255611

Svenning, J-C.; Pedersen, P. B. M.; Donlan, C. J.; Ejrnæs, R.; Faurby, S.; Galetti, M.; Hansen, D. M.; Sandel, B.; Sandom, C. J.; Terborgh, J. W.; Vera, F. W. M. 2016. Time to move on from ideological debates on rewilding. PNAS, 113(1): E2-E3. DOI: 10.1073/pnas.1521891113

Wade, L. 2016. Giant jaguars, colossal bears done in by deadly combo of humans and heat. Science News. DOI: 10.1126/science.aag0623

Wade, L. 2016. Humans spread through South America like an invasive species. Science News. DOI: 10.1126/science.aaf9881

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

2 Comments

Filed under Conservation, Ecology, Evolution, mammals, Paleontology, Zoology

The tegu lizard and the origin of warm-blooded animals

ResearchBlogging.org by Piter Kehoma Boll

Warm blood is the popular way to refer to endothermy, the ability that certain animals have to maintain a high body temperature by the use of heat generated via metabolism, especially in internal organs. Mammals and birds are the only extant groups in which all representatives are endothermic, but some fish also have this feature.

Tunna fish are truly endoothermic fish, similar to mammals and birds.

Tunna fish are truly endothermic fish, similar to mammals and birds. Photo by opencage.info**

In order to maintain a high body temperature, endothermic animals need a much higher amount of daily food than ectothermic animals (the ones that rely on environmental sources to adjust their body heat). There must be, therefore, a considerable advantage in endothermy to explain such a increased consumption of resources. The advantages include the ability to remain active in areas of low temperature and an increase in efficienty of enzimatic reactions, muscle contractions and molecular transmission across synapses.

The origin of endothermy is still a matter of debate and several hypothesis have been erected. The main ones are:

1. A migration from ectothermy to inertial homeothermy and finally endothermy.

According to this hypothesis, animals that were initially ectothermic grew in size, becoming inertially homeothermic, i.e., they retained a considerable constant internal body temperature due to the reduced surface area in relation to the their volume. Lately, selective pressures forced those animals to reduce in size, which made them unable to sustain a constant internal temperature and therefore their enzimatic, muscular and synaptic efficiency became threatened. As a result, they were forced to develop an alternative way to maintain a high body temperature and acquired it through endothermy.

Initially considered a plausible explanation due to the body size of the ancestors of mammals in fossil record, new phylogenetic interpretations caused a complete mix of large-bodied and small-bodied animals, so that currently fossils don’t support this idea anymore.

2. A large brain heating the body

The brain in endothermic species produces much more heat than any other organs. This led to the assumption that maybe a large brain generating heat was the responsible for the later development of full endothermy. However, evidence from both exant and extinct species point to the opposite. It seems more reasonable that a large brain evolved after endothermy and not the opposite.

3. A nocturnal life needs more heat

This idea states that the development of endothermy happened as a way to allow animals to be active during the night. The fact that most primitive mammals appear to have been nocturnal seems to support this hypothesis, but in fact many extant nocturnal mammals actually have a lower body temperature than diurnal mammals. Other aspect that counts against this hypothesis is that the ancestors of mammals already showed evidences of an increase in body temperature despite the fact that they most likely were not nocturnal.

4. Heat to help the embryos to develop

As you may know, in many ectothermic vertebrates, such as reptiles, eggs need to be incubated at a constant temperature in order to develop adequately. Endothermy, therefore, could have evolved as a way to allow parents to incubate the eggs themselves and have a higher control on temperature stability. One fact that support this theory is the dual role of thyroid hormones in reproduction and in the control of metabolic rate.

Endothermy may have evolved to incubate eggs at a constant temperature.

Endothermy may have evolved to incubate eggs at a constant temperature. Photo by Bruce Tuten**

5. Aerobic capicity leading to the heating of internal organs

According to this hypothesis, endothermy evolved after the increase of aerobic capacity, i.e., the first thing to happen was to increase the ability of muscles to consume oxygen in order to release energy, which helped the animal to move faster, among other things. This increased aerobic capicity was attained by increasing the number of mitochondria in muscle cells, which led to higher body temperature in the muscules and consequently a higher visceral temperature. Despite fossils indicating that mammal ancestors developed morphological adaptations indicating increased aerobic capacity, it is not possible to afirm that endothermy was not already present in those species.

Very recently, it has been found that the tegu lizards (Salvator merianae) from South America increase their body temperature during the reproductive season, achieving as much as 10°C above the environment temperature at night. Thus, it seems that they are able to increase heat production and heat conservation in ways similar to the ones used by fully endothermic animals.

The tegu lizard Salvator merianae is a facultative endotherm.

The tegu lizard Salvator merianae is a facultative endotherm. Photo by Jami Dwyer.

As such an increase in body temperature happens during the reproductive cycle, it supports the hypothesis of endothermy evolving to assist the development of embryos, as explained above. Also, it indicates that ectotherms may engage in temporary endothermy and perhaps permanent endothermy may have evolved by using this path.

Further studies on the tegu lizards are needed to clarify this interesting phenomenon and expand our knowledge on endothermy evolution in mammals and birds.

– – –

References:

Kemp, T. (2006). The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure Zoological Journal of the Linnean Society, 147 (4), 473-488 DOI: 10.1111/j.1096-3642.2006.00226.x

Tattersall, G., Leite, C., Sanders, C., Cadena, V., Andrade, D., Abe, A., & Milsom, W. (2016). Seasonal reproductive endothermy in tegu lizards Science Advances, 2 (1) DOI: 10.1126/sciadv.1500951

Wikipedia. Endotherm. Available at: <https://en.wikipedia.org/wiki/Endotherm&gt;. Access on February 1, 2016.

– – –

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License.

** Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 Generic License.

1 Comment

Filed under Behavior, Ecology, Evolution, Paleontology, Zoology

Pooping to evolve: how feces allowed us to exist

by Piter Kehoma Boll

ResearchBlogging.orgBillions of years ago, when the first lifeforms appeared on Earth, our planet was very different from what it is today. Oxygen, so essential for our survival, was not present in the atmosphere.

Thanks to the appearance of the first photosynthetic bacteria, the so-called Cyanobacteria or blue-green algae, our atmosphere started to accumulate oxygen. As you may know, photosynthesis is a process by which plants and other photosynthetic organisms convert water and carbon dioxide into oxygen and organic compounds.

Oxygen is a very reactive element, so it can easily interact with other compounds and is great to burn organic matter to release energy. Without oxygen, heterotrophic life, such as animals, would not be able to use large quantities of energy and therefore would have never been able to achieve large size.

As you may also know, animals most likely appeared in the oceans and only much later conquered the land. However, oxygen produced by photosynthesis accumulates mainly in the atmosphere and not in the oceans. Today, only 1% of the global oxygen is found in the oceans, and it was even worse during the first million years of multicellular life. Do you know why?

The most primitive animals alive today are sponges, which are quite different from other animals. They usually have a hollow body with several pores, which function as tiny mouths through which water carrying small planktonic organisms and other organic matter is pulled inwards and later released by a large opening on the top of the body. So the main thing sponges do is mixing water and extracting a small amount of organic matter from the water column. Their feces, when returning to the water, are not very different in size from the organic matter they initially ingested.

Sponges ingest organic particles and release organic particles. They are not very efficient in removing organic matter from water.

Sponges ingest organic particles and release organic particles. They are not very efficient in removing organic matter from water.

Thus, in a sponge-only world, the water column was possibly always crowded with dissolved organic matter. This was a feast for bacteria, which are always eager to decompose organic matter and, while doing so, they consume large amounts of oxygen. Therefore, water with high amounts of organic matter increases bacterial activity and turns the environment anoxic, i.e., without oxygen. As a result, there was no oxygen available to allow animals to become large.

Despite not growing very much, animals were still evolving, of course, and eventually the bilaterian animals appeared. Bilaterian animals have a bilateral symmetry and, the most important feature in this story, a gut. It means they ingest food, digest it, process it and later eliminate the rests as… poop! In the gut, feces become compact as fecal pellets and sink much quickly to the bottom of the ocean, cleaning the water column from organic matter and drastically reducing bacterial activity. With no bacteria decomposing in the water column, the oxygen levels rapidly started to increase, allowing animals to grow and things like fish to evolve.

Bilaterian animals produce compact fecal pellets which sink to the bottom, cleaning the water column.

Bilaterian animals produce compact fecal pellets which sink to the bottom, cleaning the water column.

If animals had never started to poop, we most likely would have never been able to arise in this world. Long live the poop!

– – –

References:

Holland, H. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361 (1470), 903-915 DOI: 10.1098/rstb.2006.1838

Turner, J. T. (2002). Zooplankton fecal pellets, marine snow and
sinking phytoplankton blooms. Aquatic Microbial Ecology, 27, 57-102

1 Comment

Filed under Ecology, Evolution, Paleontology

Review: The Paleoart of Julius Csotonyi

By Carlos Augusto Chamarelli

Hi everybody! PK here and it’s book-reviewing time! As you probably know by now, Titan Books has released another tome of paleoart earlier this year in May 20, and once again Earthling Nature was offered a chance to get a copy and review it for everyone’s delight. What happened, however, is that the timing was a much unfortunate one with the World Cup messing absolutely everything in Rio, so I haven’t actually received my copy yet (at the time of this writing), but I did receive things that were posted in May these days, so I’m still hopeful.

Fortunately, I have a PDF version which I could read while waiting, so my impressions written here are based on that; it just means I can’t praise the paper and illustration quality and such as much as I did previously, but bear with me anyways.

Dinosaur attacks are mandatory for paleoart covers.

Dinosaur attacks are mandatory for paleoart covers.

The new book in question, entitled The Paleoart of Julius Csotonyi, is a little reminiscent of Titan’s previous book on paleoart, Dinosaur Art – The World’s Greatest Paleoart, released in 2012 (and which you can view our critique right here), the difference being that instead of being a collection of works from 10 paleoartists, this time it focuses solely on the art – and some biography – of one of them: the Hungarian-born, Canadian-raised artist Julius Csotonyi. You know, like it’s said in the title.

I’ll start right off the bat saying that Csotonyi’s work is much impressive and definitely was one of the highlights of Dinosaur Art, so I think he is indeed one of the prime choices for a book solely focused on his work, and the text also provide interesting insights on these works as well as rather inspirational accounts of his rise to paleoartistic success. I mean, creating dinosaur murals for a museum? That’s some paleoart-nirvana right there.

Also, this picture. Nothing else needs to be said.

Also, this picture. Nothing else needs to be said.

Like Dinosaur Art, the book is full with beautiful artworks depicting prehistoric life from many time periods, some small and some spreading though pages as they should be to enjoy the details, plus there are examples of the usual start in childhood at dinosaur drawing in the beginning of it all, but what caught my attention the most was the presence of step-by-step pictures, showing the process of making a bunch of confusing lines like those of sketches become the saurian-masterpiece everyone loves. For those unfamiliar with Csotonyi ‘s style, he uses mostly digital tools, like a good modern paleoartist usually does; sometimes he uses brushes for a more traditional look, sometimes photomanipulation to achieve more realism, but the resulting picture always have that particular look and can be instantly recognized.

Mostly the reconstructed creatures possess striking patterns, but not striking colors; that, to me, is a key difference when dealing with realism with dinosaurs, and usually the more an artist make huge dinosaur colorful the less I’m inclined to judge their work as a reliable window to prehistoric life*. In this respect, Csotonyi achieves a good balance in the tone of colors, so the animals are neither boring nor garish to behold. The scenes depicted throughout the book vary, with some in the school of “dramatic prehistoric conflict”, others are more neutral and peaceful, and there are some which are anatomy and bones studies, so there’s something for every taste. It’s also worth noting that Csotonyi actually revisits older pictures and update their looks, as it was the case of the Anchiornis, which is important as depictions of dinosaurs will invariably change,and editing then as such is a good manner to make your picture still relevant.

Reenactment of Jaws Included.

Reenactment of Jaws Included.

I do have one or two points that I personally have mixed feelings about : the pictures where he uses actual photos for the landscape aren’t as good as those where he actually makes the scenery, and I understand it’s easier to do that than making the entire scene, but in some of these cases the shadows of the animals get a little in the eye, and it looks too much like the creature was in fact inserted into the scene rather than being part of it. On another point, some of the skins used in the photo manipulations can be a little jarring; the Edaphosaurus with a tuatara’s scaly skin and face being a good example of this. Then again, those can be regarded as very minor points as they don’t detract of the overall quality, so I’m not one bit bothered, and neither should you, as the book remains a incredible piece.

"Alright, alright! You can keep it! Geez."

“Alright, alright! You can keep it! Geez.”

In closing thoughts, The Paleoart of Julius Csotonyi is yet another excellent book for everyone interested in dinosaurs and prehistoric life, depicted here in an evocative but not in a “dinosaurs are monsters” light, and it’s definitely worth checking. I promise that when (if) I get my copy I’ll update this review. Also, you can click here to go to his website give him a good ol’ Iguanodon thumbs-up.

 

*And don’t give me the “oh, but birds are dinosaurs, and they’re colorful, so dinosaurs must have been ALL colorful!” BS. It’s just embarrassing.

1 Comment

Filed under Paleoart, Paleontology, Reviews

Paleontology, biology and human life in face of 3D Printing

by Carlos Augusto Chamarelli

Hi there folks! After a long time absent I finally gathered enough willpower and decent topic material to post something in this humble site of ours. In this article I’ll talk about a relatively recent technology that is quickly growing and can revolutionize the way we study fossils and other biological subjects, as well as the way we can help humanity in an applicable way.

But first, some shameless advertising because it’s always good to spread this kind of thing around: if you missed Bill Nye’s debate against that other guy you can watch it in its entirety clicking here. Regardless of whether you believe Bill inadvertently helped the Creation Museum go ahead in building its replica of Noah’s Ark (until they run out of money again, that is) or not, it’s still a great source of entertainment to watch and show your kids, teaching them the difference between spouting nonsense that vaguely sounds convincing to actual debating using facts and that’s okay to not know something rather than pretending you know all. Second but not less important, Cosmos: an Space Time Odyssey episodes are available online by clicking here. As of now I myself couldn’t watch because my internet lets me down, but for those who missed it or don’t live where it’s airing, go ahead and watch it for your brain’s content.

Now for my topic properly, the astounding technology in question is 3D printing. If you’re unfamiliar with 3D printing: it’s the process to which a tridimensional model made in a computer is transformed into a physical object by means of a machine – the 3D printer – that will sculpt the desired object. In 3D. I first came to know of this technology sometime during 2006; it was during the development of Spore, and Maxis considered offering a service to which players could import their creations and receive it as physical miniature, and it did come live two years later when the game was released. It had some limitations such as not being able to reproduce overly thin features and a very grainy texture thanks to the material used, which also made the model incredibly fragile. Since then 3D printing became more refined and widespread. Nowadays there are several online services to which you can order your very own 3D models such as Shapeways, i.Materialise, Sculpteo and so on, and make them in better details and made of more durable materials than before.

Yup, EBA is out of business.

Yup, EBA is out of business.

Apart from the alluring prospect of printing your favorite video game characters and prototyping for engineers (my priorities are set right), 3D printing also offer some interesting possibilities when it come to the study and teaching of biology – specially paleontology – and the development of prosthetics. For instance, regarding the former, it can help paleontologists in the extraction of fossils. As of now, the process to which fossils are dug up and prepared to be analyzed properly in a lab is something along the lines of:

Find fossil bed -> very carefully excavate the site -> find fossil embedded in rock -> very carefully excavate fossil -> shed tears as you accidently damage the fossil while excavating -> wrap fossil in plaster and ship it to the lab and hope it arrives safely -> receive fossil in lab -> very carefully remove plaster not to damage fossil -> shed tears as you accidently damage fossil while removing plaster with saw-> further shed tears as you accidently damage the fossil during analysis.

Pictured: shed tears.

For the reasons above, it’s understandable that methods that allow studying these fossils while minimizing risks are very welcome. One such method that quickly gained notoriety was the use of CT scans, which generated 3D models of the specimens to which scientists could peek at their inner structures without actually cracking open the fossil. It was by this very technique we came to know that Pachycephalosaurus had a sturdier helmeted skull than previously thought, making the old assumption that they butted heads just a little bit more plausible. While this was an amazing step forward in the study of fossils, the next step came soon after; this technique was mostly used on fossils already cleaned up of sediments, but the same method proved to be just as effective to fossils still encased in rock slabs.

Some paleontologists were afraid that excavating the rock would damage the skeletons they work so hard to retrieve. As a solution, they simply extracted the rock around with the fossil inside, scanned it thus generating a 3D model like its predecessor, and then printed it. The result was a near perfect replica of what was encased in the rock. I can’t stress enough of how amazing this is: the remains of a creature, extinct for millions and millions of years, reproduced as if removed from its mineral tomb for everyone to look and touch.

In this case, shed tears of joy.

All seems to be favorable evidence that printing fossils might become an even bigger part of paleontology in the future. While I personally don’t believe this process would come to replace the usual method of digging up fossils entirely, as foreshadowed by the nameless paleontologist in Grant’s team in Jurassic Park, – in fact, even if the 3D print is a perfect replica, it still doesn’t beat the real thing – I do believe that employing this technique would minimize the risks of damaging specimens; the fossils would still need to be removed from their locations lest they continue to erode and be affected by earthquakes, rains and whatnot as was the case of the forelimbs of the baby Chasmosaurus unearthed just a few months ago in Canada, which could have been further damaged had it not been removed. Not only it would help knowing exactly where paleontologists should remove the sediments if they judge it to be necessary, the 3D model generated could help in both having a bigger picture of the creature they’re dealing with, as in arranging the pieces to form a posture if the animal was alive (assuming that it’s possible for them to fit in the machines), as well as aiding museums show said findings to the public.

The process to which fossil replicas are made for museum exhibitions is just as risky and labor intensive as the digging of fossils: a team of artisans is employed to make castings out of the original fossils – very carefully not to shed tears as they accidently damage the fossil in the process- and once ready probably months later the skeleton is assembled and put to the public’s delight. The problem is, because of its complexity and requirement for skilled workmanship to achieve maximum quality, these replicas are hard to come by, and so the museums that get to expose them take extra care that they’re not damaged, in the form of a polite sign asking visitors not to touch it when in reality they really want to punch whoever break them in the face. The problem of interchangeability is minimized if the museum makes more replicas intended to other museums, as it was the case of the dodo skeleton offered by the Royal Ontario Museum.

Say “thanks, Royal Ontario Museum”.

While the dodo skeleton was a very nice gesture for other museums, it is a rather small specimen. It’s one thing to make a replica of a bird’s skeleton and ship it to other museums while still providing an affordable price. It’s quite another trying to do the same with a huge dinosaur skeleton like an 85 feet long Brachiosaurus. But imagine if museums could print these skeletons, regardless of their size and complexity. I don’t want to be mean to the people in the trade of fossil replicas, but the idea that a museum could print their own skeletons to their exhibitions using the skeleton models created by MRI scanning is a fascinating one, and advantageous not only to the museum but those who study in it. It’s not something still in the realm of imagination: there is already the employment of 3D printing to reproduce animal’s skeletons for educational purposes (as well as other areas, but we are a biology-centered blog), so plans to make an actual exhibition out of entirely 3D printed specimens seems to me to be just as far out in the future as the use of 3D printed skeletons in biology classrooms that give students a more tangible and interactive tool for learning.

Another interesting use of 3D printing in the field of biology is its medical use. Somewhere in the world someone thought that using polymers and metal to make miniatures was too mundane, and skin tissue was a better material. Whatever the case is that brought about the use of this technology in the medical area, 3D printing functional organs seems to be a new reality, and anything from functional ears, hearts, livers, even eyes are being worked on to aid patients in need of transplants or face reconstructions. More recently, only few days ago, a woman successfully got a 3D printed skull replacement.

I don’t want to post a picture of it here, so here’s a picture of Gummy instead.

I don’t want to post a picture of that here, so have a picture of Gummy instead.

So while more complex organs are still on their developmental phase, there’s this immediate use where 3D print can be used to replace bone structures, even prosthetic limbs. In order words, not only 3D printing opens ups possibilities to print miniatures of your favorite Pokémon and learn about prehistory, it also gives a bright future to those struggling in the line of organ donations. Instead of waiting in line, medics could simply print a new organ.

I just want to finish this post by saying that this is what I find most fascinating about technological advancement: you start out with a simple tool with maybe one or two uses, and then people will create new forms of this tool, for uses one couldn’t possibly imagine. Something that started as a printer that didn’t use paper came to be the door to many other wonderful developments. The downsides of the modern 3D printers regarding their price, operation and general availability are really only temporary.

Well then, I hope you have enjoyed my blabbering article and, as usual, comments and questions are appreciated!

Leave a comment

Filed under Paleontology, Technology