Category Archives: worms

Friday Fellow: Large Roundworm of Pigs

by Piter Kehoma Boll

It’s time to go back to the roundworms and to the parasites once more. Probably one of the most famous roundwors is the large roundworm of humans, Ascaris lumbricoides, but today I’m going to talk about its closest relative, the large roundworm of pigs, Ascaris suum.

Found worlwide, the large roundworm of pigs, as its name implies, infects pigs. It is a large worm of the phylum Nematoda and is very similar to the large roundworm of humans, the main difference being simply that the former infects pigs and the latter infects humans.

800px-asuum_male_and_female

A typical male (top) and female (bottom) of Ascaris suum. Photo by Wikimedia user VlaminckJ.*

The adult worms live in the intestine of pigs and show sexual dimorphism. Males are smaller, measuring 13–31 cm in length and have a curled posterior end. Females are larger, measuring 20–49 cm and do not have the curled posterior end. They have a light pink to whitish color and may occur in large quantities inside the host.

When sexually mature, a female can lay up to 200 thousand eggs per day and have up to 27 million eggs in its uteri. The eggs are eliminated with the pig feces and remain in the environment where the embryo starts its development. As soon as the eggs are eaten by a pigg, the eggs hatch and the larvae crawl into the walls of the large intestine and reach the bloodstream, being carried to the liver and from there to the lungs. In the lungs, they reach the alveoli and start to migrate upward toward the trachaea and are coughed up and swallowed by the pig, reaching the intestine again. There, they remain in the small intestine and complete their development into adults.

The great similarity of Ascaris suum and Ascaris lumbricoides implicate that they have a recent common ancestor which may have split into the two species after humans started to raise pigs. Eventually Ascaris suum may also infect humans and Ascaris lumbricoides may infect pigs too, but they seem to have a preference and an improved development in their “traditional” host. Molecular studies indicate that the populations of both species seem to be considerable isolated, but there have been some eventual hybridizations, suggesting that they are yet in the process of become fully separate species.

– – –

References:

Leles, D.; Gardner, S. L.; Reinhard, K.; Iñiguez, A.; Araujo, A. (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Parasite and Vector5: 42. https://dx.doi.org/10.1186/1756-3305-5-42

Wikipedia. Ascaris suum. Available at: < https://en.wikipedia.org/wiki/Ascaris_suum >. Access on November 6, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Advertisements

Leave a comment

Filed under Friday Fellow, Parasites, worms

Friday Fellow: Duckweed Chain Flatworm

by Piter Kehoma Boll

Today we have one more flatworm in our team. It is part of the most bizarre group of flatworms, the so-called Catenulida. Our fellow is called Catenula lemnae, which I adapted as the “duckweed chain flatworm”.

The duckweed chain flatworm is a very small animal, measuring about 0.1 mm in width and about two or three times this size in length. It is found worldwide in freshwater lakes and ponds and is likely a complex of species, but more detailed studies are needed to make it clear. As other catenulids, it lives close to the substract, being considered a benthic animal, and feeds on other smaller organisms, such as small invertebrates and algae. It is usually a dominant species in the community of benthic microanimals, such as microturbellarians, in places where it is found.

796px-catenula_lemnae

A chain of several connected individuals (zooids) of Catenula lemnae. Photo by Christopher Laumer.*

The word catenula, meaning “little chain” in Latin, was given to these animals because of their peculiar way of vegetative reproduction. The organism frequently divides transversally close to the posterior end, giving rise to new organisms that are genetically identical to the original one. However, the new animals often remain connected to each other for a long time before splitting, and as this asexual reproduction continues, it eventually turn them into a chain of connected individuals (called zooids). This chain swims elegantly using its cilia as if it were a single individual.

Most recent studies mentioning the duckeed chain flatworm are simply surveys of the species composition of a certain area or broad phylogenetic studies on the catenulids or flatworms in general. Little is known about the ecology, behavior and population structuring of this species, unfortunately.

– – –

References:

Braccini, J. A. L.; Leal-Zanchet, A. M. (2013)  Turbellarian assemblages in freshwater lagoons in southern Brazil. Invertebrate Biology132(4): 305–314. https://dx.doi.org/10.1111/ivb.12032

Marcus, E. (1945) Sôbre Catenulida brasileiros. Boletim da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo, série Zoologia, 10: 3–113.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under flatworms, Friday Fellow, worms

The hammerhead flatworms: once a mess, now even messier

by Piter Kehoma Boll

Few people know that land planarians exist, but when they do, they most likely know the hammerhead flatworms, which comprise the subfamily Bipaliinae.

The hammerhead flatworms, or simply hammerhead worms, have this name because their head has lateral expansions that make them resemble a hammer, a shovel or a pickaxe. Take a look:

Bipalium_vagum

The “wandering hammerhead worm”, Bipalium vagum. Notice the peculiar head. Photo by flickr user budak.*

The Chinese knew the hammerhead worms at least since the 10th century, which is understandable, since they are distributed from Japan to Madagascar, including all southern and southeast Asia, as well as Indonesia, the Philippines and other archipelagos. The western world, however, first heard of them in 1857, when William Stimpson described the first species and put them in a genus called Bipalium, from Latin bi- (two) + pala (shovel), due to the head shape. One of them was the species Bipalium fuscatum, a Japanese species that is currently considered the type species of the genus.

800px-bipalium_fuscatum_by_head

Anterior region of Bipalium fuscatum, the “brownish hammerhead worm”. Photo by Wikimedia user 根川大橋.**

Two years later, in 1859, Ludwig K. Schmarda described one more species, this one from Sri Lanka, and, unaware of Stimpson’s paper, called the species Sphyrocephalus dendrophilus, erecting the new genus for it from Greek sphȳra (hammer) + kephalē (head).

Sphyrocephalus_dendrophilus

Drawings by Schmarda of Sphyrocephalus dendrophilus.

In the next year, 1860, Edward P. Wright did something similar and described some hammerhead worms from India and China, creating a new genus, Dunlopea, for them. The name was a homage to his friend A. Dunlop (whoever he was).

Dunlopea_grayia

Wright’s Drawing of Dunlopea grayia (now Diversibipalium grayi) from China.

Eventually those errors were perceived and all species were put in the genus Bipalium, along with several others described in the following years. All hammerhead worms were part of the genus Bipalium until 1896, when Ludwig von Graff decided to improve the classification and divided them into three genera:

1. Bipalium: With a head having long “ears”, a well developed head.
2. Placocephalus (“plate head”): With a more semicircular head.
3. Perocephalus (“mutilated head”): With a shorter, rudimentary head, almost as if it had been cut off.

Bipaliids

Compare the heads of typical species of Bipalium (left), Placocephalus (center) and Perocephalus (right), according to Graff.

This system, however, was soon abandoned and everything went back to be simply Bipalium and continued that way for almost a century, changing again only in 1998, when Kawakatsu and his friends started to mess with the penises of the hammerhead worms.

First, in 1998, they erected the genus Novibipalium (“new Bipalium“) for species with a reduced or absent penis papilla, and retained in Bipalium those with a “well”-developed penis papilla. It is worth noticing though that this well-developed papilla is not much bigger than a reduced papilla in Novibipalium. In both genera the actual, functional penis is formed by a set of folds in the male atrium and not by the penis papilla itself as in other land planarians that have a penis papilla.

Later, in 2001, Ogren & Sluys separated some more species of Bipalium in a new genus called Humbertium (after Aloïs Humbert, who described most species of this new genus). They were separated from Bipalium because the ovovitelloducts (the ducts that conduct the eggs and vitellocites) enter the female atrium from ahead, and not from behind as in the typical Bipalium. This separation is, in my opinion, more reasonable than the previous one.

Now we had three genera of hammerhead worms based on their internal anatomy, but several species were described without any knowledge of their sexual organs. Thus, in 2002, Kawakatsu and his friends created one more genus, Diversibipalium (the “diverse Bipalium“) to include all species whose anatomy of the sexual organs was unknown. In other words, it is a “wastebasket” genus to place them until they are better studied.

Are these three genera, Bipalium, Novibipalium and Humbertium, as now defined, natural? We still don’t know, but I bet they are not. A good way to check it would be by using molecular phylogeny, but we don’t have people working with these animals in their natural habitats, so we do not have available material for that. Another thing that can give us a hint is to look at their geographical distribution. We can assume that genetically similar species, especially of organisms with such a low dispersal ability as land planarians, all occur in the same geographical region, right? So where do we find species of each genus? Let’s see:

Bipalium: Indonesia, Japan, China, Korea, India.

Novibipalium: Japan.

Humbertium: Madagascar, Sri Lanka, Southern India, Indonesia.

Weird, right? They are completely mixed and covering a huge area of the planet, especially when we consider Humbertium. We can see a tendency, but nothing very clear.

Fortunately, some molecular analyses were published (see Mazza et al. (2016) in the references). One, which included the species Bipalium kewense, B. nobile, B. adventitium, Novibipalium venosum and Diversibipalium multilineatum placed Diversibipalium multilineatum very close to Bipalium nobile, and they are in fact very similar, so I guess that we can transfer it from Diversibipalium to Bipalium, right? Similary, Novibipalium venosum appears mixed with the species of Bipalium. I guess this is kind of messing things up one more time.

681px-bipalia_invasive

Head of some species of Bipalium, including the ones used in the study cited above. Unfortunately, I couldn’t find a photo or drawing of Novibipalium venosum. Image by myself, Piter Kehoma Boll.**

Interestingly, among the analyzed species, the most divergent was Bipalium adventitium, whose head is “blunter” than that of the other ones. Could the head be the answer, afterall? Let’s hope that someone with the necessary resources is willing to solve this mess soon.

– – –

Like us on Facebook!

– – –

See also:

Once found and then forgotten: the not-so-bright side of taxonomy.

The lack of taxonomists and its consequences on ecology.

They only care if you are cute. How charisma harms biodiversity.

The faboulous taxonomic adventure of the genus Geoplana.

Darwin’s Planaria elegans: hidden, extinct or misidentified?

– – –

References:

Graff, L. v. (1896) Über das System und die geographische Verbreitung der Landplanarien. Verhandlungen der Deutschen Zoologischen Gesellschaft6: 61–75.

Graff, L. v. (1899) Monographie der Turbellarien. II. Tricladida Terricola (Landplanarien). Engelmann, Leipzig.

Kawakatsu, M.; Ogren, R. E.; Froehlich, E. M. (1998) The taxonomic revision of several homonyms in the genus Bipalium, family Bipaliidae (Turbellaria, Seriata, Tricladida, Terricola). The Bulletin of Fuji Women’s College Series 236: 83–93.

Kawakatsu, M.; Ogren, R. E.; Froehlich, E. M., Sasaki, G.-Y. (2002) Additions and corrections of the previous land planarians indices of the world (Turbellaria, Seriata, Tricladida, Terricola). The bulletin of Fuji Women’s University. Ser. II40: 162–177.

Mazza, G.; Menchetti, M.; Sluys, R.; Solà, E.; Riutort, M.; Tricarico, E.; Justine, J.-L.; Cavigioli, L.; Mori, E. (2016) First report of the land planarian Diversibipalium multilineatum (Makino & Shirasawa, 1983) (Platyhelminthes, Tricladida, Continenticola) in Europe. Zootaxa4067(5): 577–580.

Ogren, R. E.; Sluys, R. (2001) The genus Humbertium gen. nov., a new taxon of the land planarian family Bipaliidae (Tricladida, Terricola). Belgian Journal of Zoology131: 201–204.

Schmarda, L. K. (1859) Neue Wirbellose Thiere beobachtet und gesammelt auf einer Reise um die Erde 1853 bis 1857 1. Turbellarien, Rotatorien und Anneliden. Erste Hälfte. Wilhelm Engelmann, Leipzig.

Stimpson, W. (1857) Prodromus descriptionis animalium evertebratorum quæ in Expeditione ad Oceanum, Pacificum Septentrionalem a Republica Federata missa, Johanne Rodgers Duce, observavit er descripsit. Pars I. Turbellaria Dendrocœla. Proceedings of the Academy of Natural Sciences of Philadelphia9: 19–31.

Wright, E. P. (1860) Notes on Dunlopea. Annals and Magazine of Natural History, 3rd ser.6: 54–56.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommerical-NoDerivs 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Leave a comment

Filed under flatworms, Systematics, taxonomy, worms, Zoology

Friday Fellow: Scaly Lepidodermella

by Piter Kehoma Boll

From the longest animal seen last week, today we will see one of the shortest. Measuring only 190 µm in length, our fellow is called Lepidodermella squamata, which I turned into a “common” name as scaly lepidodermella.

797px-lepidodermella_squamatum

A specimen of Lepidodermella squamata. Photo by Giuseppe Vago.*

The scaly lepidodermella belongs to the phylum Gastrotricha, commonly known as hairybacks, which are all microscopic and distributed worldwide in aquatic environments. Found in freshwater environments worlwide, the scaly lepidodermella has the trunk covered in scales, hence its name. It feeds on other small organisms, such as algae, bacteria and yeast, as well as on detritus.

One of the most interesting aspects of the biology of the scaly lepidodermella is its reproduction. Although being hermaphrodite, this species usually produces only four eggs during its lifetime and those develop without fertilization. This means that the reproduction is parthenogenetic. However, strangely enough, the individuals become sexually mature after laying those four eggs, producing sperm and sometimes laying additional eggs, but most of those never hatch or, when they do, they produce offspring that rarely manage to become adults. Sexual reproduction, therefore, would be theoretically possible, but it has never been observed and there is no known means by which sperm could be transferred from one individual to the other.

This late sexual development may therefore be nothing but a vestige of its sexual past. Perhaps in future generations these traits will disappear and nothing but the perthenogenetic reproduction will last.

– – –

Like us on Facebook!

– – –

References:

Hummon, M. R. (1984) Reproduction and sexual development in a freshwater gastrotrich 1. Oogenesis of parthenogenetic eggs (Gastrotricha). Zoomorphology 104(1): 33–41. https://dx.doi.org/10.1007/BF00312169

Hummon, M. R. (1986) Reproduction and sexual development in a freshwater gastrotrich 4. Life history traits and the possibility of sexual reproduction. Transactions of the American Microscopical Society 105(1): 97–109. https://dx.doi.org/10.2307/3226382

Wikipedia. Lepidodermella squamata. Available at <https://en.wikipedia.org/wiki/Lepidodermella_squamata&gt; Access on September 3, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

1 Comment

Filed under Friday Fellow, worms, Zoology

Friday Fellow: Bootlace Worm

by Piter Kehoma Boll

Long ago I presented some of the extremes of the animal world, including the largest, the cutest and the leggiest. Now it’s time to introduce another extreme: the longest. And this animal is so long that it seems impossible. Its name: Lineus longissimus, commonly known as bootlace worm. Its length: up to 55 meters.

lossless-page1-399px-nemertean_lineus_longissimus-tif

An entangled bootlace worm. Photo by Bruno C. Vellutini.*

The bootlace worm is a member of the phylum Nemertea, commonly known as ribbon worms, and is found along the shores of the Atlantic Ocean in Europe. Most of the time, the worm is contracted, forming what looks like a heap of entagled wool threads that has no more than 30 cm from side to side. Although there are reports of specimens measuring more than 50 m, most of them are much shorter, with 30 m being already a very large size. Its width is of about 0.5 cm, so it is almost literally a long brown thread.

large

Lineus longissimus photographed in Norway. Photo by Guido Schmitz.**

As all nemerteans, the bootlace worm is a predator and hunts its prey between the rocks on sandy shores, stunning them with its long poisonous proboscis and then swallowing them whole. Soft and fragile, the bootlace worm has no way to protect itself from predators using any physical defense, but it is known to have a series of different toxins on its epidermis, including some similar to the deadly pufferfish poison tetrodotoxin (TTX) that is produced by bacteria living in the mucus that surrounds the body of the worm.

Now, before leaving, take a look at this video of a bootlace worm swallowing a polychaete:

– – –

References:

Cantell, C.-E. (1976) Complementary description of the morphology of Lineus longissimus (Gunnerus, 1770) with some remarks on the cutis layer in heteronemertines. Zoologica Scripta 5:117–120. https://dx.doi.org/10.1111/j.1463-6409.1976.tb00688.x

Carroll, S.; McEvoy, E. G.; Gibson, R. (2003) The production of tetrodotoxin-like substances by nemertean worms in conjunction with bacteria. Journal of Experimental Marine Biology and Ecology 288: 51–63. https://dx.doi.org/10.1016/S0022-0981(02)00595-6

Gittenberger, A.; Schipper, C. (2008) Long live Linnaeus, Lineus longissimus (Gunnerus, 1770) (Vermes: Nemertea: Anopla: Heteronemertea: Lineidae), the longest animal worldwide and its relatives occurring in The Netherlands. Zoologische Mededelingen. Leiden 82: 59–63.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Leave a comment

Filed under Friday Fellow, worms

Darwin’s Planaria elegans: hidden, extinct or misidentified?

by Piter Kehoma Boll

During his epic voyage on the Beagle, Charles Darwin visited Rio de Janeiro, Brazil, and collected some amazing land planarians, a group that until then was very little known. One of the species he found was Geoplana vaginuloides, the type-species of the genus Geoplana, at that time named Planaria vaginuloides.

f6387-vaginuloides-pedrabranca40

Geoplana vaginuloides (Darwin, 1844), the first Brazilian land planarian species to be described. Photo by Fernando Carbayo.*

The second species described by Darwin was named Planaria elegans. Darwin’s description is as it follows:

“Position of the orifices as in P. vaginuloides. Anterior part of the body little elongated. Ocelli absent on the anterior extremity, and only a few round the margin of the foot. Colours beautiful; back snow-white, with two approximate lines of reddish brown; near the sides with several very fine parallel lines of the same tint; foot white, exteriorly clouded, together with the margin of the body, with pale blackish purple: body crossed by three colourless rings, in the two posterior of which the orifices are situated. Length 1 inch; breadth more uniform, and greater in proportion to length of the body, than in last species.
Hab. Same as in P. vaginuloides. [Rio de Janeiro]”

And this is all we know about this species. Darwin did not provide any drawing and later researchers did not report this species again, except when mentioning Darwin’s publication. As you can see by the description, it is not very accurate. He does not say what is the breadth of each line or band, neither how many of the “several fine parallel lines of the same tint” there are. Here is a quick drawing I did of how I imagine the creature would be:

image description

My idea of what Darwin’s Planaria elegans may have looked like. Head to the left. Credits to myself, Piter Kehoma Boll.**

In 1938, Albert Riester described a land planarian from Barreira, a district in the city of Teresópolis, Rio de Janeiro, naming it Geoplana barreirana. He described it as it follows (translated from the original in German):

“Land planarian found on a leaf after a rain; greatest lenght ca. 20 mm. Middle of the back white with two fine purple-red (atropurpureus light) parallel stripes. Outside of the white also limitted by pale red, then follows (on both sides) a black band and laterally a black-brown marmorate pattern over brown background. The middle stripe ends at the rear [end]. Head spotted, marked with transversal spotted bands (regenerate?). Underside gray, bordered by black-brown. Anterior end is arched backwards.”

Fortunately, Riester provided a drawing, which you can see below:

Barreirana_barreirana_Riester

Geoplana barreirana drawn by Riester (1938).

They look a bit alike, right? Fortunately Geoplana barreirana (currently named Barreirana barreirana) was found by later researchers and we have photographs! See one specimen below:

f6284_barreiranatijuca3

A specimen of Barreirana barreirana found in the Tijuca National Park, Rio de Janeiro. Photo by Fernando Carbayo.*

Riester did not describe any transversal marks on his specimens, but he may have mistaken them for color loss in preserved specimens or something like that. Otherwise the specimen looks very similar to Riester’s drawing, and the internal anatomy, which Riester provided as well, is also compatible.

Now let’s try to fit Darwin’s description of Planaria elegans in this photograph. White background, two reddish brown stripes and several fine parallel stripes of the same tint. He likely described the animals from preserved specimens, even though he have seen them alive and collected them. Perhaps the colors had already faded a little and the black stripes, which internally touch two of the reddish stripes, may have been considered a single purple-red stripe? It is not clear, in his description, whether there is white between the “reddish brown” stripes and the “pale blackish-purple” sides, as I did in my drawing, or not, as in Barreirana barreiranabut certainly the dark gray sides of B. barreirana could be the same as the pale blackish purple sides of Planaria elegans, don’t you think? And B. barreirana HAS three white “rings” crossing the body. You can see the first and the second very clearly on the specimen above. The third one is not very well marked, but you can see a third white mark interrupting the gray sides. And the second and almost third marks seem to be quite where one would expect the two orifices (mouth and gonopore) of the planarian to be!

And what about the ventral side? Darwin described P. elegan‘s as being white with a pale blackish purple border as the sides of the dorsum. Riester described G. barreirana‘s as being gray bordered by black-brown. Here is Barreirana barreirana‘s ventral side:

Barreirana barreirana from below

Ventral side of Barreirana barreirana from the Tijuca National Park, Rio de Janeiro. Photo by Fernando Carbayo.*

It is white, or pale gray perhaps, and the borders are of the same color as the sides of the dorsum!

I think it is very, very likely that Darwin’s Planaria elegans and Riester’s Geoplana barreirana are the same species. The fact that no one but Darwin has ever seen a specimen of Planaria elegans makes it even more likely.

What do you think?

– – –

See also:

How are little flatworms colored? A Geoplana vaginuloides analysis.

The fabulous taxonomic adventure of the genus Geoplana.

– – –

References:

Darwin, C. (1844) Brief Description of several Terrestrial Planariae, and of some remarkable Marine Species, with an Account of their Habits. Annals and Magazine of Natural History 14, 241–251.

Riester, A. (1938) Beiträge zur Geoplaniden-Fauna Brasiliens. Abhandlungen der senkenbergischen naturforschenden Gesellschaft 441, 1–88.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

1 Comment

Filed under Cryptids, Extinction, taxonomy, worms, Zoology

Friday Fellow: Tiger Worm

by Piter Kehoma Boll

European in origin, but currently cosmopolitan, today’s Friday Fellow is a very useful earthworm for humans. Scientifically known as Eisenia fetida, this species has many different popular names, including tiger worm, red californian earthworm, red wiggler worm, etc.

Eisenia_fetida

Two specimens of Eisenia fetida. Photo by iNaturalist.org user nzwormdoctor.*

The tiger worm rarely lives underground, prefering to live among decaying vegetable matter, such as in the leaf litter, therefore being considered an epigean species. Due to its adaptability to live among and feed on decaying organic material, it is widely used by humans for vermicomposting, i.e., producing humus to be used as a nutrient rich soil in cultivation of vegetables. As a result, it has been introduced worlwide.

When molested, the tiger worm secrets a yellow and pungent liquid from its celomic cavity that has been shown to be toxic to some vertebrates, thus probably being a defense mechanism against predators.

Due to its agriculatural importance, the tiger worms has been used in many studies regarding its response to different soil contaminants, including pesticides, and its presence on the amount of inorganic nutrients, such as carbon and nitrogen, in the soil.

– – –

References:

Albanell, E.; Plaixats, J.; Cabrero, T. (1988) Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes. Biology and Fertility of Soils, 6(3): 266–269.

Spurgeon, D. J.; Hopkin, S. P. (1999) Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Applied Soil Ecology, 11(2–3): 227–243.

Zhang, B.-G.; Li, G.-T.; Shen, T.-S.; Wang, J.-K.; Sun, Z. (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetidaSoil Biology and Biochemistry, 32(14): 2055–2062.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Leave a comment

Filed under Friday Fellow, worms