Tag Archives: birds

Shaking dinosaur hips and messing with their heads

by Piter Kehoma Boll

This week brought astonishing news regarding the phylogeny of dinosaurus, as you perhaps have heard or read. New anatomical evidences have completely rebuilt the basis of the dinosaur family tree and I’m here to explain a little bit of what happened.

As we all know, Dinosaurs include a great variety of beasts, from the meat-eating theropods to the long-necked sauropods and from the horned ceratopsians to the armored ankylosaurs, among many others.

largestdinosaursbysuborder_scale

Silhouette of a human compared to the largest known dinosaurs of each major group. Picture by Matt Martyniuk.*

For more than a century now, dinosaurus have been divided into two groups, called Ornithischia and Saurischia. Ornithischia (“bird-hipped”) includes dinosaurus whose pelvic bones are more similar to what is found in birds, with a pubis directed backward. Saurischia (“lizard-hipped”), on the other hand, have a pubis directed forward, as in reptiles in general. This grouped the theropods and the sauropods in the same group as Saurischia while other dinosaurus were grouped as Ornithischia. But birds are actually theropods, thus being lizard-hipped dinosaurus and not bird-hipped dinosaurus! Confusing, isn’t it? So let’s take a look at their hips:

Pelvic_bones

Comparison of the hips of a crocodile (Crocodylus), a sauropod (Diplodocus), a non-avian theropod (Tyrannosaurus), a bird (Apteryx), a thyreophoran (Stegosaurus), and an ornithopod (Iguanodon). Red = pubis; Blue = ischium; Yellow = ilium. Picture by myself, Piter K. Boll.**

As you can see, the primitive state, found in crocodiles, sauropods and early theropods, is a pubis pointing forward. A backward-pointing pubis evolved at least twice independently, both in more advanced theropods (such as birds) and the ornithischian dinosaurus. But could we be so certain that Tyrannosaurus and Diplodocus are more closely related to each other (forming a clade Saurischia) just because of their hips? Afterall, this is a primitive hip, so it is very unlikely to be a synapomorphy (a shared derived character). Nevertheless, it continued to be used as a character uniting sauropods and theropods.

A new paper published by Nature this week, however, showed new evidences that point to a different relationship of the groups. After a detailed analysis of the bone anatomy, Matthew G. Baron, David B. Norman and Paul M. Barrett have found 20 characters that unite theropods with ornithischians and not with sauropods. Among those we can mention the presence of a foramen (a hole) at the anterior region of the premaxillary bone that is inside the narial fossa (the depression of the bone that surrounds the nostril’s opening) and a sharp longitudinal ridge along the maxilla.

skulls

The skulls of both ornithischians and theropods (above) show an anterior premaxillary foramen in the narial fossa (shown in yellow) and and a sharp ridge on the maxilla (shown in green), as well as other characters that are not present in sauropodomorphs and herrerasaurids (below). Composition using original pictures by Carol Abraczinskas and Paul C. Sereno (Heterodontosaurus), Wikimedia user Ghedoghedo (Eoraptor and Herrerasaurus), and flickr user philosophygeek (Plateosaurus).**

In his blog Tetrapod Zoology, Dr. Darren Naish comments the new classification and points out some problems that arise with this new view. One of them is the fact that both theropods and sauropodomorphs have pneumatic (hollow) bones, while ornithischians do not. If the new phylogeny is closer to the truth, that means that pneumacity evolved twice independently or evolved once and was lost in ornithischians.

He also mentions that both ornithischians and theropods had hair-like or quill-like structures on their skin. In theropods this eventually led to feathers. Could this be another synapomorphy uniting these groups? Maybe… but when we think that pterosaurs also had “hairs”, one could also conclude that a “hairy” integumentary structure was already presented in the common ancestor of dinosaurus. In this case, perhaps, we only had not found it yet on sauropods. Now imagine a giant Argentinosaurus covered with feathers!

One concern that appeared with this new organization is whether sauropodomorphs would still be considered dinosaurs. The term “dinosaur” was coined by Richard Owen in 1842 to refer to the remains of the three genera known at the time, Iguanodon, Hylaeosaurus and Megalosaurus, the first two being ornithischians and the latter a theropod. As a consequence, the original definition of dinosaur did not include sauropods. Similarly, the modern phylogenetic definition of dinosaur was “the least inclusive clade containing Passer domesticus (the house sparrow) and Triceratops horridus“. In order to allow Brachiosaurus and his friends to continue sitting  with the dinosaurs, Baron et al. suggested to expand the definition to include Diplodocus carnegii. So, dinosaurus would be the least inclusive clade containing P. domesticusT. horridus and D. carnegii.

In this new family tree, the name Saurischia would still be used, but to refer only to the sauropodomorphs and some primitive carnivores, the herrerasaurids. The new clade formed by uniting theropods and ornithischians was proposed to be called Ornithoscelida (“bird-legged”), a name coined in 1870 to refer to the bird-like hindlimbs of both theropods and ornithopods (the subgroup of ornithischians that includes dinosaurs such as Iguanodon and the duck-billed dinosaurs).

What can we conclude with all that? Nothing will change if you are just a dinosaur enthusiast and do not care about what’s an ornithischian and a saurischian. Now if you are a phylogeny fan, as I am, you are used to sudden changes in the branches. Most fossils of basal dinosaurs are incomplete, thus increasing the problem to know how they are related to each other. Perhaps this new view will last, perhaps new evidence will change all over again the next week.

– – –

ResearchBlogging.orgReferences and further reading:

Baron, M., Norman, D., & Barrett, P. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution Nature, 543 (7646), 501-506 DOI: 10.1038/nature21700

Naish, D. (2017). Ornithoscelida Rises: A New Family Tree for DinosaursTetrapod Zoology.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Leave a comment

Filed under Evolution, Extinction, Paleontology, Systematics

Friday Fellow: Shoebill

by Piter Kehoma Boll

When I first saw a picture of this bird, many years ago, my first thought was that it could not be real. It looked like a character of an old Hanna-Barbera animation and not like a real creature.

A real bird or a cartoon character? Behold the shoebill! Photo by Olaf Oliviero Riemer.

A real bird or a cartoon character? Behold the shoebill! Photo by Olaf Oliviero Riemer.*

The shoebill (Balaeniceps rex), also known as whalehead or shoe-billed stork, is a large African bird originally thought to be closely related to the true storks, as its body somewhat resembles that of a stork. However, molecular studies concluded it to be more closely related to pelicans, as well as to herons and ibises (which previously were also considered to be closer to storks!).

As one can easily notice, the name shoebill comes from the bird’s massive bill. The pointed upper jaw and the sharp edges of the bill help the shoebill to capture prey and tear them to pieces. The most frequent prey are fish, but it may also consume frogs, snakes, small monitors and crocodiles, as well as, more rarely, turtles, rodents and small birds.With a height typically between 110 and 140 cm, but able to reach 150, the shoebill is a tall bird. Its wingspan is also big, reaching up to 260 cm.

Certainly an interesting bird to look at. Photo by wikimedia user Quartl.*

Certainly an interesting bird to look at. Photo by wikimedia user Quartl.*

The shoebills are solitary birds and even in crowded areas they avoid to stay to close to each other.  They apparently love hippos, as the disturbance that these large beasts create in water help them to obtain food by forcing fish to the surface.

The IUCN lists the shoebill as ‘vulnerable’ and its major threats include habitat destruction and hunting. Currently there are about 5,000 to 8,000 individuals with a disconnected distribution along river basins in sub-Saharan Africa.

– – –

References:

John, J. R. M.; Nahonyo, C. L.; Lee, W. S.; Msuya, C. A. 2013. Observations on nesting of shoebill Balaeniceps rex and wattled crane Bugeranus carunculatus in Malagarasi wetlands, western Tanzania. African Journal of Ecology, 51(1): 184-187. DOI: 10.1111/aje.12023

Wikipedia. Shoebill. Available at: <https://en.wikipedia.org/wiki/Shoebill&gt;. Access on January 13, 2016.

– – –

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

1 Comment

Filed under Conservation, Ecology, Friday Fellow, Ornithology

Biological fight: the case of artificial stimuli in behavior research

by Piter Kehoma Boll

ResearchBlogging.org The study of animal behavior is an important approach to understand several aspects on the ecology and the evolution of living beings, both from the analyzed animals themselves and the species with which they interact. For example, understanding how a bee recognizes a flower as a food source and how it approaches it may explain a lot about the physiology and the evolution of the flower and vice-versa, thus clarifying why such a combination of characters is the one that is found in the current population.

As with virtually any type of study in biology, a research may be done with sampling or experiments. By sampling you obtain non-manipulated information directly from the environment. You collect or observe a small sample of the whole and infer the general situation of the population based on it. On the other hand, in an experiment you manipulate the environment and watches how the organisms will react to the different stimuli presented to them and, from this, you develop your conclusion.

For example, if you want to know what a species of frog eats, you may find out by sampling, observing some frogs in the wild while they feed or capturing some and examining their stomach contents. You may also offer them different kinds of food, either in the environment or in the lab, and observe how the frogs reacts to each one.

Thus, in experiments you control the stimuli the species receives from the environment. This is the point where things start to get nasty. May the stimuli have artificial elements, i.e., elements that cannot be found by the animal in its habitat?

The opinions about it are divergent and recently led to a “formal fight” published in the journal Ethology:

On one side is a group of researchers from several universities around the world (Hauber et al., 2015) that defends the use of artificial stimuli to analyze behavior. They use as a model the studies on the rejection of eggs of parasitic birds by parasitized birds, a well-studied phenomenon.

First, let us contextualize this phenomenon briefly:

Several bird species, mainly cuckoos, do not incubate their own eggs. Instead of doing it, they lay them in the nests of birds of other species and hope that the poor creatures incubate and later feed the chicks as if they were their own. As a result, natural selection favors cuckoos whose eggs are more similar to the ones of the parasitized bird and also favors the parasitized birds that better distinguish their eggs from the ones of the intruders. It is a typical evolutionary race.

Find the intruder. The similarity between the egg of the parasite and the parasitized can vary greatly. Photos by wikipedia user Galawebdesign (left)* and by Grüner Flip (right).

Find the intruder. The similarity between the egg of the parasite and the parasitized can vary greatly. Photos by wikipedia user Galawebdesign (left)* and by Grüner Flip (right).

In experimental studies on egg rejection by parasitized birds, it is common to use artificial eggs that exaggerate features of natural eggs. This includes, for example, changing color and size in order to understand which is the most relevant for the bird to recognize the eggs as being yours or not. However, can we trust the results of such experiments using artificial elements?

Haubert et al. (2015) think that we can. Their arguments in favor of the use of such artificial stimuli are the following:

  1. Real eggs of the studied species are difficult to get in large quantities and could cause significant impacts over the populations if used. So, artificial eggs ensure the integrity of populations.
  2. It is difficult to get a set of natural eggs similar enough to allow the necessary repetitions to validate the test. After all, a result is only considered valid if it is recorded several times in face of the same stimulus. Artificial eggs allow identical copies and, thus, true repetitions.
  3. Natural eggs vary in several aspects at the same time, such as color, size, form, texture… In artificial eggs it is possible to control these aspects and allow only one to show free variation, so isolating the influence of each one during the recognition by the bird.
  4. A variation beyond the ones found in the wild may help to find populations with different degrees of perception of strange eggs and consequently where are the sites of higher selective pressure.
Original eggs of the parasitized species painted to exaggerate color features. Photos by István Zsoldos. Extracted from Moskát et al. 2010.

Original eggs of the parasitized species painted to exaggerate color features. Photos by István Zsoldos. Extracted from Moskát et al. 2010.

Not everyone looks so favorably to such an unrestrained use of artificial stimuli. Soon after the opinion of Hauber et al. we find the reply of David C. Lahti (2015) who faces all by himself the “artificialist” army. Lahti shows some aversion to such exaggerate use of artificial elements that many times are not used in a responsible manner.

Suggesting a more restrict use of artificial elements, he argues the following:

  1. Our perception of the environment is different from the one of the species we are studying. For instance, a bird sees a much wider range of colors than we do. When we paint an artificial egg black and white in order to simulate a natural black and white egg, we don’t know whether the bird really sees both eggs with the same colors. So, while we suppose that the eggs look similar by our perception, the reality from the bird’s point of view can be very different.
  2. When we try to create a set of artificial eggs that vary in only one aspect, such as the size of the spots on the shell, for instance, in order to control the influence of this stimulus only, we always end up including secondary stimuli that are not measured, such as the paint used to make the spots. If the birds shows a different response to eggs with small spots (natural ones) when compared to eggs with large spots (artificial ones), how can we know that the difference was not caused by the perception of the paint, either chemically or visually, by the animal? It would be necessary to perform tests that would discard this possibility, but it does not happen usually.
  3. Exaggerated artificial stimuli may go beyond the species’ range of recognition. An egg with a color too different from any color variation found in the environment could cause the bird not to see it as an egg, which would lead to problems in the interpretation of the results.

Concerning this last argument, Hauber et al. emphasize that is important to take care on a priori interpretations on the species behavior. That is to say, we cannot guess what the bird is thinking. The fact that the bird removes the parasite’s eggs from the nest or not does not mean that it is capable of recognize the egg as an intruder, or even as an egg. The way the bird interprets the stimulus is not as important as its response to it.

Therefore, we can conclude that artificial stimuli can be advantageous and in several circumstances they are the only available alternative. It is important, however, to take care with their use and try to be sure that secondary features, generally neglected, are not considered important by the animal.

– – –

References:

Hauber, M.; Tong, L.; Bán, M.; Croston, R.; Grim, T.; Waterhouse, G.; Shawkey, M.; Barron, A.; & Moskát, C. 2015. The Value of Artificial Stimuli in Behavioral Research: Making the Case for Egg Rejection Studies in Avian Brood Parasitism Ethology, 121 (6), 521-528 DOI: 10.1111/eth.12359

Lahti, D. 2015. The Limits of Artificial Stimuli in Behavioral Research: The Umwelt Gamble Ethology, 121 (6), 529-537 DOI: 10.1111/eth.12361

Moskat, C.; Ban, M.; Szekely, T.; Komdeur, J.; Lucassen, R.; van Boheemen, L.; & Hauber, M. 2010. Discordancy or template-based recognition? Dissecting the cognitive basis of the rejection of foreign eggs in hosts of avian brood parasites Journal of Experimental Biology, 213 (11), 1976-1983 DOI: 10.1242/​jeb.040394

– – –

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

1 Comment

Filed under Behavior, Ecology, Evolution, Ornithology, Zoology

Friday Fellow: Tropical Kingbird

by Piter Kehoma Boll

ResearchBlogging.orgThis is the first bird featured in Friday Fellow and I have chosen it for a special reason: it’s binomial name is Tyrannus melancholicus, the melancholic tyrant. Isn’t it almost poetic?

Found from southern United States to the northern half of Argentina, the Tropical Kingbird, known as sirirí or suiriri in Spanish and Portuguese, is very well adapted to human disturbed areas, so it is easily spotted along roads or at gardens and parks. Populations inhabiting areas of great seasonality usually migrate to warmer areas, mainly towards southern United States during the winter in the southern hemisphere.

Tropical kingbird in São Paulo, Brazil. Photo by Dario Sanches. Extracted from commons.wikimedia.org

Tropical kingbird in São Paulo, Brazil. Photo by Dario Sanches*. Extracted from commons.wikimedia.org

Tropical Kingbirds are mainly predators, capturing insects intercepted in flight. They don’t seem to be very sensitive to chemical defenses of butterflies, eating even some unpalatable ones and species with similar color patterns, though some species highly unpalatable are indeed rejected. Ocasionally they may also eat fruits.

During the breeding season, they form couples and build together a bowl-shaped nest using small branches, straw and nylon and plastic threads. The female usually lays three eggs in the nest and both birds incubate them and take care of the chicks.

As a consequenceof its adaptability to humans, it is not endangered at all, at least until now, and has a status of Least Concern (LC) by IUCN.

– – –

References:

Cintra, R. 1997. Spatial Distribution and Foraging Tactics of Tyrant Flycatchers in Two Habitats in the Brazilian Amazon. Studies on Neotropical Fauna and Environment, 32 (1), 17-27 DOI: 10.1076/snfe.32.1.17.13459

Legal, E. 2007. Aspectos da nidificação do siriri, Tyrannus melancholicus (Vieillot, 1819), (Aves, Tyrannidae) em Santa Catarina. Atualidades Ornitológicas On-line, 140, 51-52

Pinheiro, C. E. G. 1996. Palatablility and escaping ability in Neotropical butterflies: tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae) Biological Journal of the Linnean Society, 59 (4), 351-365 DOI: 10.1111/j.1095-8312.1996.tb01471.x

Wikipedia. Tropical Kingbird. Available online at < http://en.wikipedia.org/wiki/Tropical_Kingbird >. Access on March 27, 2014.

– – –
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

1 Comment

Filed under Friday Fellow, Ornithology