Tag Archives: facts

Friday Fellow: Hooker’s Lips

by Piter Kehoma Boll

We are always fascinated by plants that have some peculiar shape that resemble something else. And certainly one of them is the species I’m introducing today, Psychotria elata, also known as hooker’s lips or hot lips.

Found in the rainforests of Central America, in areas of middle to high elevation, the hooker’s lips is an understory shrub and produces an inflorescence that is surrounded by a pair of bracts that resemble bright red lips. Don’t look too much or you may be tempted to kiss them.

psychotria_elata

“Kiss me”, beg the hooker’s lips. Photo by Wikimedia user IROZ.*

Certainly some creatures do kiss it, especially hummingbirds, which are its pollinators, but also many species of butterflies and bees. However, when they come to kiss the red lips, they have already spread to much, in order to allow the flowers to be exposed, and do not resemble a mouth anymore.

psychotria_elata2

Once the mouth is open, the magic of the kiss is gone. Photo by Dick Culbert.**

After pollination, the flowers develop into blue berries that are easily spotted by birds, which disperse the seeds. As the hooker’s lips produces fruits through the whole year, it is an important food source for fruit-eating birds.

– – –

ResearchBlogging.orgReferences:

EOL –  Encyclopedia of Life. Psychotria elata. Available at <http://eol.org/pages/1106123/overview&gt;. Access on March 5, 2017.

Silva, C., & Segura, J. (2015). Reproductive Biology and Herkogamy of Psychotria elata (Rubiaceae), a Distylous Species of the Tropical Rain Forests of Costa Rica American Journal of Plant Sciences, 06 (03), 433-444 DOI: 10.4236/ajps.2015.63049

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Botany, Friday Fellow

Friday Fellow: Crawling Spider Alga

by Piter Kehoma Boll

The world of unicelular creatures includes fascinating species, some of which were already presented here. And today one more is coming, the marine phytoplanctonic amoeboid protist Chlorarachnion reptans, which again is a species without a common name, so I created one: crawling spider alga.

chlorarachnion_reptans

A plasmodium of the crawling spider alga Chlorarachnion reptans. Photo by Wikimedia user NEON.*

The crawling spider alga was dicovered in the Canary Islands in 1930. It is an amoeboid alga that forms plasmodia (multinucleated networks) of cells connected by thin strips of cytoplasm (reticulopodia). The reticulopodia are also used to capture prey (bacteria and smaller protists, especially algae) working kind of like a spider web. Additionally, the crawling spider alga has chloroplasts, so being able to conduct photosynthesis. It is, therefore, a mixotrophic organism, having more than one way of feeding.

The chloroplasts of the crawling spider alga, as well of other species in its group, called Chlorarachniophyceae, have four membrane layers and appears to have evolved from a green alga that was ingested and became an endosymbiont. As a result, the chloroplast of the crawling spider alga has two sets of DNA, one from the original chloroplast that came from an endosymbiotic cyanobacteria (located inside the inner membrane) and one of the green algae (between the two inner and the two outer membranes).

Although traditionally seen as a group of algae, the chlorarachniophytes are not closely related to the more “typical” algae, such as red, green, brown and golden algae or diatoms. They are actually relatives of other protists with thin net- or thread- like pseudopods, such as radiolarians and foraminifers, forming with them the group Rhizaria.

– – –

ResearchBlogging.orgReferences:

AlgaeBase. Chlorarachnion reptans Geitler. Available at <http://www.algaebase.org/search/species/detail/?species_id=59340&gt;. Access on March 5, 2017.

EOL – Encyclopedia of Life. Chlorarachnion reptans. Available at <http://eol.org/pages/897235/overview&gt;. Access on March 5, 2017.

Hibberd, D., & Norris, R. (1984). Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova) Journal of Phycology, 20 (2), 310-330 DOI: 10.1111/j.0022-3646.1984.00310.x

Ludwig, M., & Gibbs, S. (1989). Evidence that the nucleomorphs of Chlorarachnion reptans (Chloraracnhiophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence Journal of Phycology, 25 (2), 385-394 DOI: 10.1111/j.1529-8817.1989.tb00135.x

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.5 Generic License.

Leave a comment

Filed under Algae, Friday Fellow, protists

Friday Fellow: Amphibian chytrid fungus

by Piter Kehoma Boll

Today I’m bringing you a species that is probably one of the most terrible ones to exist today, the amphibian chytrid fungus, Batrachochytrium dendrobatidis, also known simply as Bd.

batrachochytrium_dendrobatidis

Several sporangia of Batrachochytrium dendrobatidis (spherical structures) growing on a freshwater arthropod. Photo by AJ Cann.*

The amphibian chytrid fungus, as its name says, is a chytrid, a fungus of the division Chytridiomycota, which include microscopic species that usually feed by degrading chitin, keratin in other such materials. In the case of the amphibian chytrid fungus, it infects the skin of amphibians and feeds on it. It grows through the skin forming a network of rhizoids that originate spherical sporangia that contains spores.

The infection caused by the amphibian chytrid fungus is called chytridiomycosis. It causes a series of symptoms, including reddening of the skin, lethargy, convlusions, anorexia and excessive thickening and shedding of the skin. This thickening of the skin leads to problems in taking in nutrients, releasing toxins and even breathing, eventually leading to death.

chytridiomycosis

An individual of the species Atelopus limosus infected by the amphibian chytrid fungus. Photo by Brian Gratwicke.**

Since its discovery and naming in 1998, the amphibian chytrid fungus has devastated the populations of many amphibian species throughout the world. Some species, such as the golden toad and the Rabb’s fringe-limbed treefrog, were recently extinct by this terrible fungus. This whole drastic scenario is already considered one of the most severe examples of Holocene extinction. The reason for such a sudden increase in the infections is unknown, but it may be related to human impact on the environment.

We can only hope to find a way to reduce the spread of this nightmare to biodiversity.

– – –

ResearchBlogging.org
References:

Fisher, M., Garner, T., & Walker, S. (2009). Global Emergence of Batrachochytrium dendrobatidis and Amphibian Chytridiomycosis in Space, Time, and Host Annual Review of Microbiology, 63 (1), 291-310 DOI: 10.1146/annurev.micro.091208.073435

Wikipedia. Batrachochytridium dendrobatidis. Available at <https://en.wikipedia.org/wiki/Batrachochytrium_dendrobatidis&gt;. Access on March 4, 2017.

Wikipedia. Chytridiomycosis. Available at <https://en.wikipedia.org/wiki/Chytridiomycosis&gt;. Access on March 4, 2017.

Wikipedia. Decline in amphibian populations. Available at <https://en.wikipedia.org/wiki/Decline_in_amphibian_populations&gt;. Access on March 4, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Disease, Extinction, Friday Fellow, Fungi

Friday Fellow: Mexican Giant Horsetail

by Piter Kehoma Boll

If you are walking through the forest of Central America, you may end up finding something that at first you could think is a group of bamboos, plants growing as a cylindrical segmented stem that can reach up to 7 m in height, as seen in the picture below:

equisetum_myriochaetum

A group of bamboos? Not exactly. Photo by Alex LomasAlex Lomas.*

Those are not actually bamboos, though, but specimens of the largest species of horsetail that exists today, the Mexican giant horsetail, Equisetum myriochaetum. It can be found growing naturally from Peru to Mexico in areas of fertile soil, especially along water bodies such as streams and swamps.

As other horsetails, the Mexican giant horsetail has an erect and hollow stem with very narrow leaves growing in a whirl around the “joints” of the stem. The leaves are very simple, similar to those of more primitive plants such as the spikemosses and ground pines, but are thought to be a simplification of more complex leaves, as they are more closely related to the complex-leaved ferns.

More than only the largest horsetail in the world, the Mexican giant horsetail is an important medicinal plant in Mexican folk medicine, being used to treat kidney diseases and type 2 diabetes mellitus. And as in many other occasions, laboratory studies confirmed that water extracts from the aerial parts of E. myriochaetum do indeed reduce the blood glucose levels of type 2 diabetic patients without reducing their insulin levels. One more point to traditional medicine.

– – –

ResearchBlogging.orgReferences:

EOL – Encyclopedia of Life. Equisetum myriochaetum. Available at <http://eol.org/pages/6069616/overview&gt;. Access on March 4, 2017.

Revilla, M., Andrade-Cetto, A., Islas, S., & Wiedenfeld, H. (2002). Hypoglycemic effect of Equisetum myriochaetum aerial parts on type 2 diabetic patients Journal of Ethnopharmacology, 81 (1), 117-120 DOI: 10.1016/S0378-8741(02)00053-3

Royal Botanic Garden Edinburgh. Equisetum myriochaetum. Available at <http://www.rbge.org.uk/the-gardens/plant-of-the-month/plant-profiles/equisetum-myriochaetum&gt;. Access on March 4, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

1 Comment

Filed under Botany, Friday Fellow

Friday Fellow: Divergent Dinobryon

by Piter Kehoma Boll

Let’s return once more to the troublesome and neglected protists. This time I’m bringing you another tiny but beautiful alga, more precisely a golden alga. Its name is Dinobryon divergens and as usual there is no common name, so I invented one by simply translating the scientific name, thus I’ll call it the divergent dinobryon.

The divergent dinobryon is part of the class Chrysophyceae, commonly known as golden algae. Measuring about 50 µm in length, it lives in temperate lakes around the world and forms colonies composed of about 6 to 50 ovoid cells that are surrounded by a vase-like shell (lorica) of cellulose, as seen in the picture below.

dinobryon_divergens

A branching colony of Dinobryon divergens. The cells are clearly visible inside the lorica. Photo by Frank Fox.*

During colony formation, an original cell divides and one of the two daughter cells slides to the opening of the lorica and starts to construct a new one. It starts by creating the base of the lorica, which has a funnel shape and is attached to the inner wall of the original lorica. With further divisions, the colony starts to grow in a tree-like form. And the most interesting part is that the cells have two flagella and use them to swim, pulling the whole colony through the water.

As with other golden algae, the divergent dinobryon produces an internal siliceous structure that is globose, hollow and has a single opening connecting to the outside. This structure is called a statospore or stomatocyst and allows the cell to enter a resting state (cyst). The statospore is an important structure to help distinguish different species of golden algae.

The divergent dinobryon is a mixotrophic organism, meaning that it feeds by photosynthesis and by ingesting food too, especially bacteria. Kind of an interesting fellow, don’t you think?

– – –

ResearchBlogging.orgReferences:

Franke, W., & Herth, W. (1973). Cell and lorica fine structure of the chrysomonad alga, Dinobryon sertularia Ehr. (Chrysophyceae) Archiv für Mikrobiologie, 91 (4), 323-344 DOI: 10.1007/BF00425052

Herth, W. (1979). Behaviour of the chrysoflagellate alga, Dinobryon divergens, during lorica formation Protoplasma, 100 (3-4), 345-351 DOI: 10.1007/BF01279321

Karim, A., & Round, F. (1967). Microfibrils in the lorica of the freshwater alga Dinobryon New Phytologist, 66 (3), 409-412 DOI: 10.1111/j.1469-8137.1967.tb06020.x

Sandgren, C. (1981). Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyta) Journal of Phycology, 17 (2), 199-210 DOI: 10.1111/j.1529-8817.1981.tb00840.x

Sheath, R., Hellebust, J., & Sawa, T. (1975). The statospore of Dinobryon divergens Imhof: Formation and germination in a subarctic lake Journal of Phycology, 11 (2), 131-138 DOI: 10.1111/j.1529-8817.1975.tb02760.x

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Germany License.

Leave a comment

Filed under Algae, Friday Fellow, protists

Friday Fellow: Pliable Brachionus

by Piter Kehoma Boll

Charles Darwin had already noticed that small animals, such as those found in zooplankton, are widely distributed around the world, even those that are found in small ponds of freshwater. This seemed to go against the speciation theories, but it was thought to be the result of passive transport by other animals, such as migratory birds. One of such species is the tiny rotifer Brachionus plicatilis, or the pliable brachionus, as I decided to call it, a 0.1 to 0.2 mm long species found worlwide in saline lakes.

brachionus_plicatilis

A specimen of the pliable brachionus. Photo by Wikimedia user Sofdrakou.*

The pliable brachionus is a euryhaline species, meaning it can tolerate a wide range of salinity. Recent molecular studies have shown that it is actually a complex of at least 22 different species, but as this was not yet taxonomically defined, I will continue to use the terms Brachionus plicatilis and plicate brachionus in the broad sense.

In the last half century, the pliable brachionus became a commercially important species, being raised as a food source for fish larvae. It may be fed with a variety of microorganisms, such as bacteria, algae and yeasts. In the natural environment, it is considered a generalist filter-feeding species.

As many rotifers, the pliable brachionus usually reproduces by parthenogenesis, where the so-called amictic females produce diploid eggs that originate other amictic females. Under certain conditions, however, they may produce eggs that originate mictic females, which only lay haploid eggs. Unfertilized haploid eggs originate males, while those that are fertilized originate new females. A bit complex, right?

– – –

ResearchBlogging.orgReferences:

Gómez, A., Serra, M., Carvalho, G., & Lunt, D. (2002). Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis(Rotifera) Evolution, 56 (7) DOI: 10.1554/0014-3820(2002)056[1431:SIACSC]2.0.CO;2

Øie, G., Makridis, P., Reitan, K., & Olsen, Y. (1997). Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus L.) Aquaculture, 153 (1-2), 103-122 DOI: 10.1016/S0044-8486(96)01514-1

Suatoni, E., Vicario, S., Rice, S., Snell, T., & Caccone, A. (2006). An analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer—Brachionus plicatilis Molecular Phylogenetics and Evolution, 41 (1), 86-98 DOI: 10.1016/j.ympev.2006.04.025

Walker, K. (1981). 13. A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Müller 1786 Hydrobiologia, 81-82 (1), 159-167 DOI: 10.1007/BF00048713

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Leave a comment

Filed under Friday Fellow, Zoology

Friday Fellow: Tree Tumbo

by Piter Kehoma Boll

Today I’m introducing one of the most bizarre plant species in the world. Found in the Namib desert, in Namibia and Angola, the Welwitschia mirabilis, usually simply called welwitschia or tree tumbo in English, is the solely member of the order Welwitschiales, a group of gymnosperms in the division Gnetophyta.

welwitschia_mirabilis

A specimen of Welwitschia mirabilis in Naukluft, Namibia. Photo by Sara&Joachim*

The tree tumbo has a unique appearance. The seedlings have two cotyledons (the original leaves produced by the seed) and later develop two permanent leaves that grow opposite (at right angles) to the cotyledons. These permanent leaves grow continuosly, reaching up to 4 m in length. While growing, the leaves split and fray into several straps and occupy an area of about 8 m in circunference around the plant. The stem is woody and the flowers appear on a central part called crown. The species is dioecious, meaning that male and female flowers appear in different plants. Pollination is usually carried out by insects.

Living up to 2 thousand years, the tree tumbo is a very peculiar desert plant. Its leaves are broad and very large, different from what is the rule in the desert. Its root system is also very shallow, not penetrating deep in the ground. It seems that most of the water used by the plant is captured by the leaves from the morning fog.

Although having a very restrict range, the tree tumbo is not (yet) and endangered plant, as its population is considerably large. However, due to its popularity, some areas attract collectors, and since its growth is so slow, it may eventually become a vulnerable plant.

– – –

References:

Bornmann, C. H. 1972. Welwitschia mirabilis: paradox of the Namib Desert. Edeavour, 31(113):95–99.

Wikipedia. Welwitschia mirabilis. Available at <https://en.wikipedia.org/wiki/Welwitschia&gt;. Access on March 1, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

Leave a comment

Filed under Botany, Friday Fellow