Tag Archives: food weeb

The warmer the dangerouser, at least if you are a caterpillar

by Piter Kehoma Boll

Scientist all over the world agree that species diversity is higher at the tropics than at polar regions, i.e., the closer you get to the equator, more species you will find. But apart from making food webs more entangled, does it increase the overall number of interactions that species experience? Afterall, despite the increase in species richness, the population size usually decreases. For example, while there are hundreds of different tree species in the Amazon forest, the number of individuals of each species is much lower than the number of individuals of a species in a temperate forest in Europe.

In order to test whether an increase in species richness would also mean an increase in biotic interactions, a group of ecologists all over the world engaged in a worldwide experiment using nothing else but small fake caterpillars made of plasticine. The small models were placed in different areas from the polar regions to the equatorial regions and the number of attacks that they suffered were counted and grouped according to the type of predator, which was usually identifiable based on the marks left on the models.

170518143812_1_900x600

A fake caterpillar in Tai Po Kau, Hong Kong. Photo by Chung Yun Tak, extracted from ScienceDaily.

The results indicate that there is indeed an increase in predation rates towards the equator, as well as towards the sea level. Areas close to the poles or at high elevations have a smaller number of interactions. But even more interesting was the revelation that this change is really driven by small predators, especially arthropods such as ants. The rate of attacks by birds and mammals was fairly constant across the globe.

Such an evidence on the importance of arthropod predators at the tropics may make us reevaluate our ideas on the evolution of species in such places, as the main concern for small herbivores such as caterpillars in tropical forests may not be birds, but ants. And this means a completely different way to evolve defense strategies.

– – –

ResearchBlogging.orgReference:

Roslin, T., Hardwick, B., Novotny, V., Petry, W., Andrew, N., Asmus, A., Barrio, I., Basset, Y., Boesing, A., Bonebrake, T., Cameron, E., Dáttilo, W., Donoso, D., Drozd, P., Gray, C., Hik, D., Hill, S., Hopkins, T., Huang, S., Koane, B., Laird-Hopkins, B., Laukkanen, L., Lewis, O., Milne, S., Mwesige, I., Nakamura, A., Nell, C., Nichols, E., Prokurat, A., Sam, K., Schmidt, N., Slade, A., Slade, V., Suchanková, A., Teder, T., van Nouhuys, S., Vandvik, V., Weissflog, A., Zhukovich, V., & Slade, E. (2017). Higher predation risk for insect prey at low latitudes and elevations Science, 356 (6339), 742-744 DOI: 10.1126/science.aaj1631

1 Comment

Filed under Ecology