Tag Archives: protists

Friday Fellow: Pink Cellular Slime Mold

by Piter Kehoma Boll

Protists have always been problematic organisms, and today’s Friday Fellow is not different. In fact, it has probably been one of the most problematic ones. Known scientifically as Acrasis rosea, it has no common name, as you may have guessed already, so I will call him the pink cellular slime mold, as I saw him being called once.

acrasis_rosea_31330

Isolated (or not so much) cells of Acrasis rosea. Photo by Shirley Chio.*

The pink cellular slime mold is a single-celled organism with an amoeboid shape. It feeds on a variety of bacteria and yeasts and is commonly found in decaying plant matter. When the food supply is completely consumed and the cells start to starve, they gather and form a colony that act as a single organism that moves like a plasmodium similar to that of slime molds. For this reason they were originally called cellular slime molds and considered related to other organisms showing a similar behavior, such as those of the genus Dictyostelium.

This plasmodium moves through the formation of “pseudopods”. Eventually the cells start to form a pile reaching up into the air that produce fruiting bodies in the form of branched chains of spores. There is a slight division of labor between stalk and spore, but both groups of cells are viable to produce a new generation.

799px-acrasis_rosea_31095

The chains of spores are visible in this image of the pink cellular slime mold during its plasmodium phase. Photo by Shirley Chio.*

The whole process is similar to what is seen in species of Dictyostelium, but the division of labor and the morphology of the plasmodium and the fruiting bodies are a bit more complex. However, with the advancement of molecular phylogenetics, all the slime mold and cellular slime mold classification fell apart.

While Acrasis was revealed to be an excavate, being closely related to organisms such as the euglenas and parasitic flagellates, Dictyostelium is closely related to the true slime molds, such as the already presented here many-headed slime.

But the excavates are still a problematic group among the protists, and so the real position of the pink cellular slime mold may not be settled yet.

– – –

References:

Bonner, J. T. (2003) Evolution of development in the cellular slime molds. Evolution and Development 5(3): 305–313. http://dx.doi.org/10.1046/j.1525-142X.2003.03037.x

Olive, L. S.; Dutta, S. K.; Stoianovitch, C. (1961) Variation in the cellular slime mold Acrasis rosea*. Journal of Protozoology 8(4): 467–472. https://dx.doi.org/10.1111/j.1550-7408.1961.tb01243.x

Page, F. C. (1978) Acrasis rosea and the possible relationship between Acrasida and Schizopyrenida. Archiv für Protistenkunde 120(1–2): 169–181. https://doi.org/10.1016/S0003-9365(78)80020-7

Weitzman, I. (1962) Studies on the nutrition of Acrasis roseaMycologia 54(1): 113–115.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Advertisements

Leave a comment

Filed under Friday Fellow, protists

Friday Fellow: Bubble Globigerina

by Piter Kehoma Boll

A little more than a year ago I introduced the first foraminifer here, the tepid ammonia. Now it is time to bring the second one, this time a planctonic species that is rather famous and whose scientific name is Globigerina bulloides, or the bubble globigerina as I call it.

Globigerina_bulloides

A live specimen of Globigerina bulloides. Photo extracted from Words in mOcean.

This species can be found throughout the world, but it’s more common in cold subantarctic waters and a little less common in subarctic waters. The most common areas are the North and South Atlantic and the Indian Oceans, but the tropical records are most likely a misidentification of other closely related species.

The bubble globigerina usually lives in the upper 60 m of the water column, at least while reproducing, and feeds on other planktonic organisms, especially microscopic algae. In oder to maximize the ability of their gametes to meet in the vast extension of the ocean, the bubble globigerina synchronizes its sexual cycle with the moon cycle, reproducing during the first week after the new moon. It is, therefore, a kind of biological calendar.

– – –

ResearchBlogging.orgReferences:

Bé, A. W. H.; Tolderlund, D. S. 1972. Distribution and ecology of living planktonic Foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnell, B. M.; Riedel, R. (Eds.) The Micropaleontology of Oceans, Cambridge University Press, pp. 105–150.

Schiebel, R., Bijma, J., & Hemleben, C. (1997). Population dynamics of the planktic foraminifer Globigerina bulloides from the eastern North Atlantic Deep Sea Research Part I: Oceanographic Research Papers, 44 (9-10), 1701-1713 DOI: 10.1016/S0967-0637(97)00036-8

Leave a comment

Filed under Friday Fellow, protists

Friday Fellow: Giant Kelp

by Piter Kehoma Boll

This week we’ll stay in the sea and meet on of the most impressive algae, the giant kelp, Macrocystis pyrifera. It is called giant for a good reason, since it can grow up to 50 m in length and form real forests in the sea. Being able to grow 60 cm in a single day, it has the fastest linear growth of any organism on Earth.

The giant kelp is a brown algae, so it is not related (at least not closely) to green or red algae, but it is a relative of the tiny diatoms that cover the ocean. It grows in cold waters along the Pacific Coast of the Americas and close to the coast of the countries near Antarctica, such as Chile, Argentina, South Africa, Australia, and New Zealand.

macrocystis_pyrifera

It’s a really beautiful alga, isn’t it? Photo by California Academy of Sciences.*

This amazing organism is composed by a thallus that branches at the base and then continues as a single and very long stalk from which blades develop at regular intervals on only one side. At the base of each blade, there is a gas  bladder that helps the whole organism to stand in a more or less upright position.

The huge kelp forests in the oceans are an important ecosystem and many species depend on them to survive, including other algae. Humans also use the giant kelp either as a direct food source or as a source of dietary supplements, since the alga is rich in many minerals, especially iodine and potassium, as well as several vitamines.

macrocystis_pyrifera2

The kelp forests sustain a huge diversity of lifeforms in the oceans. Photo by Stef Maruch.**

In the last decades, the kelp populations are decreasing rapidly. This is most likely caused by climatic changes, as this alga cannot develop in temperatures above 21°C. The giant kelp is, thus, just one more victim of global warming. And if it goes extinct, a whole ecosystem will be gone with it.

– – –

ResearchBlogging.orgReferences:

Foster, M. (1975). Algal succession in a Macrocystis pyrifera forest Marine Biology, 32 (4), 313-329 DOI: 10.1007/BF00388989

Wikipedia. Macrocystis pyrifera. Available at . Access on January 19, 2007.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

Leave a comment

Filed under Algae, Conservation, Friday Fellow

Friday Fellow: Tepid ammonia

by Piter Kehoma Boll

One of the few groups of living being not yet featured in Friday Fellow is Rhizaria, a group of single-celled organisms that includes the famous foraminifers. So today I decided to bring you just that, a foraminifer. And I think a good species to start with is Ammonia tepida, or the “tepid ammonia” as I decided to call it.

A live Ammonia tepida. Credits to Scott Fay.*

A live Ammonia tepida. Credits to Scott Fay.*

The tepid ammonia is found worldwide in brackish waters, or more precisely in the sediments deposited in brackish waters worlwide. It is able to tolerate a wide range of temperatures and degrees of salinity and is considered an ideal species of laboratory studies. As most foraminifers, the tepid ammonia secrets a shell of calcium carbonate, which is deposited on the cell’s surface in the form of a chain of chambers forming a spiral path, thus making it look like a snail shell.

Living in the sediments, the tepid ammonia feeds mainly on algae, but also consumes bacteria. In the laboratory, it demonstrated to have the ability to prey on small animals, such as nematodes, copepods and molluk larvae.

This kid got talent!

– – –

References:

Dupuy, C.; Rossignol, L.; Geslin, E.; Pascal, P.-Y. (2010) Predation of mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman, 1926). The Journal of Foraminiferal Research 40 (4): 305–312.

Munsel, D.; Kramar, U.; Dissard, D.; Nehrke, G.; Berner, Z.; Bijma, J.; Reichart, G.-J.; Neumann, T. (2010) Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences 7 (8): 2339–2350.

– – –

*Creative Commons License
This image is licensed under a Creative Commons Attribution 2.5 Generic License.

 

Leave a comment

Filed under Friday Fellow, protists

Friday Fellow: Many-Headed Slime

by Piter Kehoma Boll

What would you think if I told you that a slime can think and even solve small puzzles? You would probably take it as an April fool’s joke, but it’s true!

Our newest fellow comes from an yet unexplored kingdom in our Fridays, the kingdom Amoebozoa. Its name is Physarum polycephalum, sometimes called the many-headed slime. It is a slime mold that lives in decaying leaves and logs in forests all over the world.

If you enter a forest during a rainy season, you may be able to find some of them growing on decaying matter. They look like network of slimy yellow veins and move very slowly, looking for food, which consists of microorganisms such as bacteria or even fungal spores.

This is what the many-headed slime look like as a plasmodium. Credits to flickr user "frankenstoen".

This is what the many-headed slime looks like as a plasmodium. Credits to flickr user “frankenstoen”.

This network phase is called plasmodium, the slime mold’s vegetative stage, during which it is active and grows, moving around in search for food. The plasmodium consists of a large syncytium, i.e., a group of cells fused together becoming something like a big cell with several nuclei.

If the environment gets too dry, the plasmodium will dissecate and become a sclerotium, a hardened dormant phase. If the food supply runs out, it will develop into the reproductive stage, where it stops to move and produces spores, which will be released in the environment. Once the conditions are favorable, the spores will germinate and release several cells that fuse to become a new plasmodium.

The many-headed slime is very easy to be maintained in a lab, so it has become a model organism. Several recent studies have shown that it is a formidable creature. It exhibits some behavioral responses indicating an intelligence similar to that of eusocial insects. It seems to have some sort of external memory, enabling it to avoid previously visited sites, and is even able to solve some basic puzzles, such as the shortest path problem, and anticipate periodic events. Also, it may be able to detect and differentiate colors.

There are even attemps to find a way to use it as a substrate to make bio-computers! The many-headed slime is certainly an amazing fellow!

– – –

References and Further Reading:

Adamatzky, A. 2013. Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Organic Electronics, 14(12): 3355-3361. DOI: 10.1016/j.orgel.2013.10.004

Becchetti, L.; Bonifaci, V.; Dirnberger, M.; Karrenbauer, A.; Mehlkorn, K. 2013. Physarum can compute shortest paths: convergence proofs and complexity bounds. Automata, Languages and Programming, 7996: 472-483

Caleffi, M.; Akyldiz, I. F.; Paura, L. 2015. On the solution of the Steiner Tree NP-Hard problem via Physarum BioNetwork. IEEE/ACM Transactions on Networking 23(4): 1092-1106. DOI: 10.1109/TNET.2014.2317911

Nakagaki, T.; Yamada, H.; Tóth, A. 2000. Intelligence: Maze-solving by an ameboid organism. Nature, 407: 470. DOI: 10.1038/35035159

Saigusa, T.; Tero, A.; Nakagaki, T.; Kuramoto, Y. 2008. Amoebae anticipate periodic events. Physical Review Letters, 100: 018101. DOI: 10.1103/PhysRevLett.100.018101

Wikipedia. Physarum polycephalum. Available at: < https://en.wikipedia.org/wiki/Physarum_polycephalum >. Access on March 30, 2016.

 

2 Comments

Filed under Friday Fellow

Friday Fellow: Toxic gambierdisc

by Piter Kehoma Boll

Last week I introduced a coral reef fish, the porkfish, and mentioned that sometimes eating it may lead to ciguatera, a kind of food poisoning. So today I decided to introduce one of the main responsibles for ciguatera, the dinoflagellate Gambierdiscus toxicus, or toxic gambierdisc.

Light microscopy image of Gambierdiscus toxicus. Credits to David Patterson and Bob Andersen.*

Light microscopy image of Gambierdiscus toxicus. Credits to David Patterson and Bob Andersen.*

Gambierdiscus toxicus was discovered in 1975 in material collected around the Gambier Islands, where ciguatera often occurs, and described in 1979. As most dinoflagellates, it is unicellular and covered with hardened plates forming a structure called theca.

Living on the surface of seaweeds, especially brown algae, the toxic gambierdisc is ingested by fish who feed on the algae. Its toxins may therefore bioaccumulate in the fish’s tissues and be transfered to larger fish that feed on the smaller ones. If those fish are eaten by humans, it leads to ciguatera.

The symptoms of ciguatera poisoning include nausea, vomiting, diarrhea, headeaches, muscle aches, numbness, vertigo, hallucinations, etc. They may last from weeks to several years, sometimes up to two decades.

Among the main toxins produced by Gambierdiscus toxicus are ciguatoxins an maitotoxin. Ciguatoxins are lipophilic polyethers that act by lowering the threshold for opening sodium channels in synapses of the nervous system, which causes depolarization, leading to paralysis. On the other hand, maitotoxin is a hydrophilic molecule that activates extracellular calcium channels and may cause cell lysis and subsequent necrosis. There is no known antidote or effective treatment against ciguatera.

So, our lesson is: don’t mess with dinoflagellates!

– – –

References:

Adachi, R.; Fukuyo, Y. 1979. The thecal structure of a marine toxic dinoflagellate Gambierdiscus toxicus gen. et sp. nov. collected in a ciguatera-endemic area. Bulletin of the Japanese Society of Scientific Fisheries, 45(1): 67-71.

Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J. M.; Yasumoto, T.; Inoue, A. 1980. Origins of ciguatera fish poisoning: a new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definetely involved as a causal agent. Toxicon, 18: 199-209.

Wikipedia. Ciguatera. Availabe at: <https://en.wikipedia.org/wiki/Ciguatera >. Access on February 29, 2016.

Wikipedia. Ciguatoxin. Available at: <https://en.wikipedia.org/wiki/Ciguatoxin&gt;. Access on February 29, 2016.

Wikipedia. Maitotoxin. Available at: <https://en.wikipedia.org/wiki/Maitotoxin >. Access on February 29, 2016.

– – –

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Leave a comment

Filed under Algae, Friday Fellow

A Brief History of the Kingdoms of Life

by Piter Kehoma Boll

Since ancient times, living beings were classified as either plants or animals and Linnaeus retained this system in his great work Systema Naturae in the 18thcentury, where he divided nature in three kingdoms: Regnum Animale (animal kingdom), Regnum Vegetabile (plant kingdom) and Regnum Lapideum (mineral kingdom). This system was not intended to reflect natural relationships among living organisms, since Linnaeus was a Christian and believed that all life forms were created separately by God himself just as they are today, but was created to make the study of living beings easier.

Linnaeus and the two kingdoms of life. Painting by Alexander Roslin, 1775.

When the first unicellular organisms were discovered by Antoine van Leeuwenhoek in 1674, they were placed in one of the two kingdoms of living beings, according to their characteristics. It remained so until until 1866, when Ernst Haeckel proposed a third kingdom of life, which he called Protista, and included all unicellular organisms in it.

Haeckel and the three kingdoms. Photo by the Linnean Society, 1908.

Later, the development of optic and electronic microscopy showed important differences in cells, mainly according to the presence or absence of distinct nucleus, leading Édouard Chatton to distinguish organisms in prokaryotes (without a distinct nucleus) and eukaryotes (with a distinct nucleus) in a paper from 1925. Based on it, Copeland proposed a four-kingdom system, moving prokaryotic organisms, bacteria and “blue-green algae”, into the kingdom Monera. The idea of a ranking above kingdom came from this time and so life was separated in two empires or superkingdoms, Prokaryota (Monera) and Eukaryota (Protista, Plantae, Animalia).

Two empires and four kingdoms

Since Haeckel, the position of fungi was not well established, oscillating between kingdoms Protista and Plantae. So, in 1969, Robert Whittaker proposed a fifth kingdom to include them, the called Kingdom Fungi. This five-kingdom system remained constant for some time; Monera were prokaryotes; Plantae were multicellular autotrophs (producers); Animalia multicellular consumers; and Fungi multicellular saprotrophs (decomposers). Protista was like the  trash bag, where anything that doesn’t fit in the other 4 kingdoms was placed in.

Whittaker and the five kingdoms. Photography source: National Academy of Sciences: Robert H. Whittaker (1920—1980) – A Biographical Memoir by Walter E. Westman, Robrt K. Peet and Gene E. Likens.

With the dawn of molecular studies around 1970, significant differences were found inside the Prokaryotes, regarded, for example, to the cell membrane structure. Based on those studies, Carl Woese divided Prokaryota in Eubacteria and Archaeobacteria, emphasizing that the differences between those two were as high as the ones between them and the eukaryotes. This later gave rise to a new higher classification of life in three domains, Bacteria, Archaea and Eukarya.

Woese and the three domains. Photo from Photo from News Bureau – University of Illinois, given by IGB (Institute for Genomic Biology).

By the end of the 20th century, Thomas Cavalier-Smith, after intense study of protists, created a new model with 6 kingdoms. Bacteria and Archea were put together in the same kingdom, called Bacteria. Protists were divided in two kingdoms: (1) Chromista, including Alveolates (Apicomplexa, parasitic protozoa like Plasmodium; Ciliates and Dinoflagellates), Heterokonts or Stramenopiles (brown algae, golden algae, diatoms, water moulds, etc) and Rhizarians (like Radiolaria and Foraminifera), among others; and (2) Protozoa, including Amoebozoa (amoebas and slime moulds), Choanozoa (choanoflagellates) and a set of flagellated protozoa called Excavata. Glaucophytes, red and green algae were classified inside the kingdom Plantae.

Cavalier-Smith and his two new kingdoms. Photo from Department of Zoology – University of Oxford.

From the 21th century on, a phylogenetic approach to classify living beings has gained strength. After a lot of molecular analyses using different genes, the real evolutionary relationship among Eukaryotes is still not clear. However, the following groups are supported by most phylogenetic trees:

(1) Archaeoplastida (or Plantae): glaucophytes (Glaucophyta), red algae (Rodophyta) and green plants and algae (Viridiplantae)

(2) Chromalveolata: Stramenopiles or Heterokonta, haptophytes (Haptophyta), cryptomonads (Cryptophyta) and Alveolata.

(3) Rhizaria: Foraminifera, Radiolaria and some amoeboid protozoa

(4) Amoebozoa: amoebas and slime moulds

(5) Opisthokonta: animals, fungi, choanoflagelates

(6) Excavata: many flagellate protozoa. This group, however, isn’t as well supported as the other ones.

The current (maybe not so) well-established groups of organisms

So, as we can see, the Eukaryotes’ case is yet to be solved, but we hope that further molecular studies will help us understand better how the tree of life branches.

– – –

References:

Baldauf, S. L. et al. 2000: A Kingdom-Level Phylogeny of Eukaryotes Based on Combined Protein Data. Science 290, 972-977.

Cavalier-Smith, T. 2004: Only six kingdoms of life. Proceedings of the Royal Society B 271, 1275-1262.

Rogozin, I. B. et al. 2009: Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes. Genome, Biology and Evolution 1, 99-113.

Wikipedia. Kingdom (Biology). Available on-line in: <en.wikipedia.org/wiki/Kingdom_(biology)>. Acess on December 5th, 2011.

4 Comments

Filed under Systematics