Tag Archives: subspecies

How do new species form?

by Piter Kehoma Boll

A long, long time ago, I wrote two posts here about the definition of species, explaining briefly the most important horizontal and vertical species concepts. So we all agree that species exists, but how they emerge? How one species become two, or how one species become another?

The phenomenon by which it occurs is called speciation. Well, sort of… It all depends on how you define a species, actually (so be certain to have read the posts I mentioned above).


Model of a lineage splitting into two lineages that evolve independently and eventually become separated species. Extracted from Hawlitschek et al. (2012)*

Speciation is usually defined as the evolution of reproductive isolation, therefore it deals more with the concept of biological species, but also with the ecological concept and certainly needs some insights on the vertical concepts. If two populations are reproductively isolated, it means that the individuals of one of them are unable or unwilling to breed with those of the other. This usually arrives through genetic and ecological differences that lead to differences in behavior, morphology, physiology. And considering that, we can classify reproductive isolation into two groups: pre-zygotic and post-zygotic isolation.

In pre-zygotic isolation, the two species are reproductively isolated because they do not want or cannot mate and produce an zygote. This may happen simply because of different behaviors in which the two species occupy different places in the environment, mate at different times of the year or even because they are not sexually attracted to each other. There are several experiments using fruitflies that demonstrate how this may evolve pretty fast.

In the late 1980s, William R. Rice and George W. Salt separated individuals of Drosophila melanogaster depending on their preference for dark × light and wet × dry environments, allowing them to mate only with other specimens showing the same preferences. After several generations, the individuals of one group were unable to mate with those of other groups because of their strong habitat preferences, making them unlikely to interact. A similar experiment was performed by Diane Dodd using the species Drosophila pseudoobscura, in which one population was raised with starch as food and other with maltose as food. In this case, after several generations the flies showed a strong preference to mate with individuals of the same group and to reject those of the other group.


Evolution of reproductive isolation in fruit flies of the species Drosophila pseudoobscura after several generations fed with different sugars.

Such speciation events are called ecological speciation and are also well-documented in the widl, especially regarding fish preferring different habitats, such as shallow × deep water or still × running water. Eventually the individuals will diverge into two groups that are ecologically isolated in the same environment and consequently become reproductively isolated as well.

Post-zygotic isolation is generally a more advanced form of isolation that indicates deep genetic divergences. This is more commonly associated with the notion of biological species and is based on the inability of the individuals of the two species to produce viable offspring. They may mate with each other and even produce a zygote, but this will be unable to developed into an embryo or the offspring will be sterile or otherwise unable to survive enough to breed. A classical example is the mule, the hybrid of a mare and a donkey that is usully sterile.


A mare, Equus ferus caballus (left), a donkey, Equus africanus asinus (right) and a mule (center). Photos by ‘Little Miss Muffit’ (flickr.com/people/42562654@N00)(mare), Adrian Pingstone (donkey) and Dario Urruty (mule).

In both forms of speciation mentioned above, reproductive isolation usually arises from the accumulation of small differences due to natural selection. This may be enhanced by two phenomena, pleiotropy and genetic hitchhiking.

Pleiotropy is the phenomen by which a single gene have influence over more than one phenotypic trait. For example, a gene that influences the shape of a bird’s bill may also make it change its diet and its song. Several human genetic diseases, such as phenylketonuria (PKU), are examples of pleiotropy.


The frizzled trait in chickens, which makes the feather curl outward, also leads to delayed sexual maturity and decreased metabolism rate. Photo by flickr user Just chaos.*

Genetic hitchhiking, on the other hand, is the phenomenon by which a gene that is naturally selected carries neighbours genes that are in the same DNA chain with it. In fruitflies, for example, a gene that is linked to courtship behavior may be drawn with the gene linked to a digestive enzyme, so that flies that specialize in one kind of sugar have a different courtship behavior than others specialized in another sugar.

That’s all for now. In a future post, I’ll talk about the geographic and genetic variables in species formation.

– – –

References and further reading:

Bolnick, D. I., Snowberg, L. K., Patenia, C., Stutz, W. E., Ingram, T. & Lau, O. L. 2009. Phenotype-dependent native habitat preference
facilitates divergence between parapatric lake and stream stickleback. Evolution, 63(8): 2004-2016.

Hendry, A. P.2009. Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66: 1383-1398.

Hoskin, C. J. & Higgie, M. 2010. Speciation via species interactions: the divergence of mating traits within species. Ecology Letters, 13: 409-420.

Maan, M. E., Hofker, K. D., van Alphen, J. J. M. & Seehausen, O. 2006. Sensory drive in cichlid speciation. The American Naturalist, 167(6):

Nosil, P. 2008. A century of evolution: Ernst Mayr (1904-2005). Ernst Mayr and the integration of geographic and ecological factors in
speciation. Biological Journal of the Linnean Society, 95: 26-46.

Turelli, M., Barton, N. H. & Coyne, J. A. 2001. Theory and speciation. TRENDS in Ecology and Evolution, 16(7): 330-343.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.5 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

Leave a comment

Filed under Evolution, Systematics