Tag Archives: trophic web

The warmer the dangerouser, at least if you are a caterpillar

by Piter Kehoma Boll

Scientist all over the world agree that species diversity is higher at the tropics than at polar regions, i.e., the closer you get to the equator, more species you will find. But apart from making food webs more entangled, does it increase the overall number of interactions that species experience? Afterall, despite the increase in species richness, the population size usually decreases. For example, while there are hundreds of different tree species in the Amazon forest, the number of individuals of each species is much lower than the number of individuals of a species in a temperate forest in Europe.

In order to test whether an increase in species richness would also mean an increase in biotic interactions, a group of ecologists all over the world engaged in a worldwide experiment using nothing else but small fake caterpillars made of plasticine. The small models were placed in different areas from the polar regions to the equatorial regions and the number of attacks that they suffered were counted and grouped according to the type of predator, which was usually identifiable based on the marks left on the models.

170518143812_1_900x600

A fake caterpillar in Tai Po Kau, Hong Kong. Photo by Chung Yun Tak, extracted from ScienceDaily.

The results indicate that there is indeed an increase in predation rates towards the equator, as well as towards the sea level. Areas close to the poles or at high elevations have a smaller number of interactions. But even more interesting was the revelation that this change is really driven by small predators, especially arthropods such as ants. The rate of attacks by birds and mammals was fairly constant across the globe.

Such an evidence on the importance of arthropod predators at the tropics may make us reevaluate our ideas on the evolution of species in such places, as the main concern for small herbivores such as caterpillars in tropical forests may not be birds, but ants. And this means a completely different way to evolve defense strategies.

– – –

ResearchBlogging.orgReference:

Roslin, T., Hardwick, B., Novotny, V., Petry, W., Andrew, N., Asmus, A., Barrio, I., Basset, Y., Boesing, A., Bonebrake, T., Cameron, E., Dáttilo, W., Donoso, D., Drozd, P., Gray, C., Hik, D., Hill, S., Hopkins, T., Huang, S., Koane, B., Laird-Hopkins, B., Laukkanen, L., Lewis, O., Milne, S., Mwesige, I., Nakamura, A., Nell, C., Nichols, E., Prokurat, A., Sam, K., Schmidt, N., Slade, A., Slade, V., Suchanková, A., Teder, T., van Nouhuys, S., Vandvik, V., Weissflog, A., Zhukovich, V., & Slade, E. (2017). Higher predation risk for insect prey at low latitudes and elevations Science, 356 (6339), 742-744 DOI: 10.1126/science.aaj1631

1 Comment

Filed under Ecology

Friday Fellow: Wheel Necklace Diatom

ResearchBlogging.orgby Piter Kehoma Boll

Most of you likely know what diatoms are, microscopic algae with a silica shell that are very abundant in the world’s oceans and one of the main oxygen producers. You may have seen images like the one below, showing the diversty of diatoms, but can you name a single species?

diatoms

The beautiful, yet largely neglected by non-experts, diversity of diatoms. Photo by Wikimedia user Wipeter.*

Today I decided to bring you a diatom Friday Fellow and let me tell you: it was not at all easy to select a nice species with a considerable amount of available information and a good picture. But at the end the winner of the First Diatom Friday Fellow Award was…

Thalassiosira rotula!

thalassiosira_rotula

Three connected individuals of Thalassiosira rotula. Photo by micro*scope.**

As with most microorganisms, this species has no common name and, as it is a tradition here, I decided to make one up and chose wheel necklace diatom. Necklace diatom seems to be a good common name for species in the genus Thalassiosira, as they are formed by several individuals connected to each other in a pattern that resembles a necklace. I decided to call this particular species wheel necklace diatom because of its specific epithet, rotula, which means little wheel in Latin.

The wheel necklace diatom is a marine species found worldwide close to the coast. It is very abundant and the dominant species in some areas, so it is of great ecological importance. Small planctonic crustaceans, such as copepods, usually feed on the wheel necklace diatom and, as those crustaceans are used as food for much larger animals, the wheel necklace diatom is responsible for sustaining a whole food chain.

– – –

References:

Ianora, A., Poulet, S., Miralto, A., & Grottoli, R. (1996). The diatom Thalassiosira rotula affects reproductive success in the copepod Acartia clausi Marine Biology, 125 (2), 279-286 DOI: 10.1007/BF00346308

Krawiec, R. (1982). Autecology and clonal variability of the marine centric diatom Thalassiosira rotula (Bacillariophyceae) in response to light, temperature and salinity Marine Biology, 69 (1), 79-89 DOI: 10.1007/BF00396964

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Leave a comment

Filed under Algae, Botany, Friday Fellow, protists

Biological fight: Should we bring mammoths back?

by Piter Kehoma Boll

Everybody knows the amazing large animals that are found in Africa and Southeast Asia. Elephants, giraffes, rhinos, hippos, horses, lions, tigers… such large creatures, mostly mammals, are usually called megafauna, the “large fauna”.

Mammals as big as the African bush elephant once roamed the Americas. Photo by flickr user nickmandel2006*.

Mammals as big as the African bush elephant once roamed the Americas. Photo by flickr user nickmandel2006*.

The Americas once had an astonishing megafauna too, full of mastodons, mammoths, giant sloths, giant armadillos and sabertooth tigers. Nowadays it is restricted to some bears and jaguars. What happened to the rest of them? Well, most went extinct at the end of the Pleistocene, around 11,ooo years ago.

South America once had mammals as big as an African bush elephant. Picture by Dmitry Bogdanov** (dibgd.deviantart.com)

South America once had mammals as big as an African bush elephant, such as the giant sloth. Picture by Dmitry Bogdanov** (dibgd.deviantart.com)

As humans already inhabited the Americas by this time, it was always speculated if humans had something to do with their extinction. It is true that nowadays hundreds, thousands of species are endangered due to human activities, so it is easy to think that humans are the best explanation for their extinction, but 10 thousands years ago the number of humans on the planet was thousands of times smaller than today and our technology was still very primitive, so it is unlikely that we could hunt a species to extinction by that period… if we were working alone.

No, I’m not talking about humans cooperating with aliens! Our sidekick was the famous climate change. Periods of extreme warming during the pleistocene seem to have had a strong impact on the populations of many large mammals and, with the aid of humans hunting them down and spreading like an invasive species, the poor giants perished.

Le Mammouth by Paul Jamin

Le Mammouth by Paul Jamin

This happened more than 10 thousand years ago, TEN THOUSAND YEARS.

In Africa, elephants and large carnivores are well known for their importance in structuring communities, especially due to their trophic interactions that shape other populations. The extinct American megafauna most likely had the same impact on the ecosystem. As a result, suggestions to restore this extinct megafauna has been proposed, either by cloning some of the extinct species or, more plausibly, by introduced extant species with a similar ecological role.

Svenning et al. (2015) review the subject and argue in favor of the reintroduction of megafauna to restore ecological roles lost in the Pleistocene, an idea called “Pleistocene rewilding” or “trophic rewilding”, as they prefer. They present some maps showing the current distribution of large mammals and their historical distribution in the Pleistocene, which they call “natural”. They also propose some species to be introduced to substitute the ones extinct, including replacements for species extinct as long as 30 thousand years ago. Now is this a good idea? They think it is and one of the examples used is the reintroduction of wolves in the Yellowstone National Park. But wolves were not extinct for millenia there, neither are they a different species that would replace the role of an extinct one.

A wolf pack in Yellowstone National Park

A wolf pack in Yellowstone National Park

Rubenstein & Rubenstein (2016) criticized the idea, arguing that we should focus on protecting the remaining ecosystems and not trying to restore those that were corrupted thousands of years ago. They also argue that using similar species may have unintended consequences. Svenning et al. answered that this is mere opinion and that a systematic research program on trophic rewilding should be developed. The reintroduction of horses in the New World and its non-catastrophic consequences is another point used to respond to the critiques.

So what’s your opinion? Should we bring mammoths, mastodonts, giant sloths and sabertooth tigers back? Should we introduce elephants and lions in the Americas to play the role that mastodonts and smilodonts had?

My opinion is no. The idea may seem beautiful, but I think it is actually fantastic, too fabulous and sensational. Horses may have come back to the Americas without bringing destruction, but we cannot be sure with anything, even with several theoretical and small-scale studies. We all know how often introducing species goes wrong, very wrong. Look at poor Australia and Hawaii, for instance. Furthermore, those giant mammals went extinct TEN THOUSAND YEARS AGO. Certainly ecosystems have adapted to their extinction. Life always finds a way. There are worse threats to those ecosystems to be addressed, such as their eminent destruction to build more cities and raise more cattle and crops.

Get over it. Mammoths are gone. Let’s try to save the elephants instead, but without bringing them to the Brazilian cerrado. They don’t belong there. They belong in the African savannah.

– – –

References:

Rubenstein, D. R.; Rubenstein, D. I. From Pleistocene to trophic rewilding: A wolf in sheep’s clothing. PNAS, 113(1): E1. DOI: 10.1073/pnas.1521757113

Svenning, J-C.; Pedersen, P. B. M.; Donlan, C. J.; Ejrnæs, R.; Faurby, S.; Galetti, M.; Hansen, D. M.; Sandel, B.; Sandom, C. J.; Terborgh, J. W.; Vera, F. W. M. 2016. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. PNAS, 113(4): 898-906. DOI: 10.1073/pnas.150255611

Svenning, J-C.; Pedersen, P. B. M.; Donlan, C. J.; Ejrnæs, R.; Faurby, S.; Galetti, M.; Hansen, D. M.; Sandel, B.; Sandom, C. J.; Terborgh, J. W.; Vera, F. W. M. 2016. Time to move on from ideological debates on rewilding. PNAS, 113(1): E2-E3. DOI: 10.1073/pnas.1521891113

Wade, L. 2016. Giant jaguars, colossal bears done in by deadly combo of humans and heat. Science News. DOI: 10.1126/science.aag0623

Wade, L. 2016. Humans spread through South America like an invasive species. Science News. DOI: 10.1126/science.aaf9881

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

2 Comments

Filed under Conservation, Ecology, Evolution, mammals, Paleontology, Zoology