Category Archives: Parasites

Friday Fellow: Salmon Fluke

by Piter Kehoma Boll

Leia em Português

Everybody knows salmons, especially the Atlantic salmon, Salmo salar, and many of us love to eat this fish species as well. However, I’m not here to talk about the Atlantic salmon itself, but to talk about one of its closes companions and antagonists, the salmon fluke.

Scientifically known as Gyrodactylus salaris, the salmon fluke is a flatworm of the clade Monogenea, a group of ectoparasites that infect mainly fish. As its name suggests, the salmon fluke infects salmons, such as the Atlantic salmon, and closely related species, such as the rainbow trout Onchorhynchus mykiss.

Several salmon flukes on a host. Photo by Tora Bardal. Extracted from https://www.drivaregionen.no/no/Gyrodactylus-salaris/

The salmon fluke was first discovered in 1952 in salmons from a Baltic population that were kept in a Swedish laboratory. Measuring about 0.5 mm in length, the salmon fluke attaches to the skin of the fish and is too small to be seen with the naked eye. The attachment happens using a specialized organ full of tiny hooks, called haptor, located at the posterior end of the body. When feeding, the salmon fluke attaches its mouth to the surface of the fish using special glands in its head and everts its pharynx through the mouth, releasing digestive enzymes on the fish, dissolving its skin, which is then ingested. The wounds caused by the parasite’s feeding activity can lead to secondary infections that can seriously affect the salmon’s health.

Artificially colored SEM micrograph of five specimens of Gyrodactylus salaris. Credits to Jannicke Wiik Nielsen. Extracted from https://www.vetinst.no/nyheter/kan-gyrodactylus-salaris-utryddes-i-drammensregionen

Different from most parasitic flatworms, monogeneans such as the salmon fluke have a single host. During reproduction, the hermanophrodite adults release a ciliated larva called oncomiracidium that infects new fish. A single fluke can originate an entire population because it is able to self fertilize.

During the 1970’s, a massive infection by the salmon fluke occurred in Norway following the introduction of infected salmon strains. This led to a catastrophic decrease in the salmon populations in the country, affecting many rivers. Due to this evident threat to such a commercially important species, several techniques have been developed to control and kill the parasite. The first developed methods included the use of pesticides in the rivers, but those ended up having a negative effect on many species, including the salmons themselves. Currently, newer and less aggressive methods have been used.

– – –

Like us on Facebook!

Follow us on Twitter!

– – –

References:

Jansen, P. A., & Bakke, T. A. (1991). Temperature-dependent reproduction and survival of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes: Monogenea) on Atlantic salmon (Salmo salar L.). Parasitology, 102(01), 105. doi:10.1017/s0031182000060406

Johnsen, B. O., & Jenser, A. J. (1991). The Gyrodactylus story in Norway. Aquaculture, 98(1-3), 289–302. doi:10.1016/0044-8486(91)90393-l

Meinilä, M., Kuusela, J., Ziętara, M. S., & Lumme, J. (2004). Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). International Journal for Parasitology, 34(4), 515–526. doi:10.1016/j.ijpara.2003.12.002

Wikipedia. Gyrodactylus salaris. Available at < https://en.wikipedia.org/wiki/Gyrodactylus_salaris >. Access on December 26, 2018.

Advertisements

1 Comment

Filed under flatworms, Friday Fellow, Parasites, Zoology

Friday Fellow: Wood Cricket’s Worm

by Piter Kehoma Boll

Last week I introduced the small wood cricket, so I will use it as an oportunity to introduce, today, one of its parasites, the Wood Cricket’s Worm Paragordius tricuspidatus.

800px-paragordius_tricuspidatus

Two individuals of the wood cricket’s worm. Photo by D. Andreas Schmidt-Rhaesa.*

The wood cricket’s worm is a member of the phylum Nematomorpha, commonly known as horsehair worms. The adults are free-living worms that inhabit freshwater bodies, especially rivers and streams and have a peculiar mating behavior in which many worms are “tied” to each other in a large knot, like a worm orgy. After mating is finished, the female lays its eggs at the edge of the water, on the ground, where they may eventually be ingested by wood crickets living nearby.

Inside the cricket, the egg hatches and the larvae starts to develop inside the cricket’s body cavity, filling it completely during its development. When the worm is ready to leave its host, it is able to control the host’s behavior, inducing it to jump into a water body, allowing the parasite to leave the cricket and go looking for a partner to mate, starting the cycle again.

Paragordius_tricuspidatus

Paragordius tricuspidatus (arrow) leaving the body of a wood cricket. Photo extracted from Ponton et al. (2006) (See references).

An interesting behavior of the wood cricket’s worm is its ability to escape from the body of a predator. Usually when a wood cricket jumps into the water and the worm is trying to leave the host, an aquatic predator, such as a fish or a frog, may end up eating the cricket, which would put an end to the life of the parasitic worm as well. Recently, however, it has been found that the worm is able to escape the predator’s body, usually through the mouth, when the cricket is eaten. This is the first known case of a parasite escaping a predator of its hosts.

We have to accept that parasitic worms have very adventurous lives.

– – –

Like us on Facebook!

Follow us on Twitter!

– – –

References:

Thomas, F.; Ulitsky, P.; Augier, R.; Dusticier, N.; Samuel, D.; Strambi, C.; Biron, D. G.; Cayre, M. (2003) Biochemical and histological changes in the brain of the cricket Nemobius sylvestris infected by the manipulative parasite Paragordius tricuspidatus (Nematomorpha)International Journal of Parasitology 33: 435–443.

Ponton, F.; Lebarbechon, C.; Lefèvre, T.; Biron, D. G.; Duneau, D.; Hughes, D. P.; Thomas, F. (2006) Parasite survives predation on its hostNature 440: 756.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

1 Comment

Filed under Friday Fellow, Parasites, worms

Friday Fellow: Common giardia

by Piter Kehoma Boll

Parasites are always a group eager to be featured here, and human parasites have a special place in our hearts… sometimes literally. Today’s species, however, has a special place in our small intestine.

Called Giardia lamblia, sometimes also identified under the outdated synonyms Giardia duodenalis or Giardia intestinalis, our species has not a common name, but as it is the most popular and widespread species of the genus Giardia, I decided to call it simply the common giardia.

The common giardia is a flagellated unicellular organism that affects not only humans but several other mammal species. In the wild, the common giardia exists in the form of an inert cyst that can survive for prolonged periods and under different environmental conditions.

giardia_cyst_wtmt3

A cyst of Giardia lamblia. Credits to Centers for Disease Control and Prevention.

When the cysts are ingested by humans or other mammals, they develop into the active stage, called trophozoite, once they reach the small intestine. The trophozoite is a flagellated cell with two well-developed nuclei that make it look like a smiling face. In this stage, the common giardia reproduced by simple binary fission. For a long time, it was thought that sexual reproduction did not occur at all in this species, but some recent evidence indicate that recombination may occur, although it is not very clear yet how it happens.

800px-giardia_intestinalis_28259_1729

Two trophozoites of the common giardia under the microscope. Credits to Josef Reischig.*

The ventral surface of the trophozoite is concave, forming an adhesive disk that attaches the cell to the wall of the intestine, preventing it to be transported downward the intestinal tract. Although not invading the intestinal cells, the infection of Giardia lamblia usually causes diarrhea and malabsorption. When exposed to biliar secretions, the common giardia may develop into a cyst and is thus eliminated with the feces, allowing the cycle to begin again.

Humans are very often contaminated by several means, such as by ingesting contaminated water, which may include both urban untreated water or clear water in the wild where other mammals may have defecated. It is, therefore, a common infection among hikers, people living under poor sanitary conditions and so on.

The common giardia has some peculiarities, such as the lack of mitochondria, which for some time led to the assumptions that they may belong to a very primitive group of Eukaryotes. Recently, however, a vestigial organelle that likely derived from mitochondria, named mitosome, has been found in this species, suggesting that this feature is a secondary loss caused by its parasitic life in an anoxic environment.

– – –

Like us on Facebook!

Follow us on Twitter!

– – –

References:

Adam, R. D. (2001) Biology of Giardia lambliaClinical Microbiology Reviews 14(3): 447–475.

Wikipedia. Giardia lamblia. Available at < https://en.wikipedia.org/wiki/Giardia_lamblia >. Access on 28 June 2018.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Leave a comment

Filed under Parasites, protists

Friday Fellow: Pear Rust

by Piter Kehoma Boll

Beautiful and deadly, today’s fellow appears during spring as gelatinous orange projections coming out of juniper trees in Europe and North America. Its name is Gymnosporangium sabinae, commonly known as the pear rust.

800px-gymnosprangium_rust_on_a_juniper_tree

The jelly-like horns of the pear rust on a juniper tree. Photo by Mark Sadowski.*

The pear rust is a basidiomycete, i.e., a fungus of the phylum Basidiomycota, therefore related to the common mushrooms, but belonging to a different class, the Puccioniomycetes.

During winter, the pear rust remains in a resting state inside branches and twigs of juniper trees. After wet days in spring, the fungus sprouts and appears as horn-like growths covered by an orange gelatinous mass, which are called telia. The telia produce wind borne spores called teliospores that can infect pear trees.

668px-birnengitterrost_baum

The pear rust on pear leaves. Photo by Jan Homann.

Once reaching the pear tree, the teliospores germinate and infect the leaves of the new host. The infection appears in summer as rust-colored spots on the leaves, hence the name pear rust. In heavily infected plants, the effects of the pear rust can be severe, sometimes causing the plant to lose all its leaves.

In pear trees, the fungus produce reproductive structures known as aecia. They come out from the underside of pear leaves and produce spores called aeciospores, which are able to infect new juniper trees.

800px-birnengitterrost_gymnosporangium_fuscum

The aecia coming out of the rust on a pear tree. Photo by H. Krisp.**

Due to the economic importance of pear trees to humans, the pear rust is a species of great concern. Some countries have policies intended to reduce the spread of the disease, such as preventing transportation of juniper trees from areas known to have the fungus to areas in which it is unknow. In areas where the fungus exist, the solutions to reduce the damage include the use of chemical fungicides, the removal of infected branches in juniper trees and sometimes the removal of any juniper tree around the areas where pear trees are cultivated.

– – –

References:

Fraiture, A.; Vanderweyen, A. (2011) Gymnosporangium sabinae: such a beautifiul disease. Scripta Botanica Belgica 11: 193–194.

Ormrod, D. J.; O’Reilly, H. J.; van der Kamp, B. J,; Borno, C. (1984) Epidemiology, cultivar susceptibility, and chemical control of Gymnosporangium fuscum in British Columbia. Canadian Journal of Plant Pahology6: 63–70.

Wikipedia. Gymnosporangium sabinae. Available at < https://en.wikipedia.org/wiki/Gymnosporangium_sabinae >. Access on April 27, 2018.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 2.0 Generic License.

**Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.

1 Comment

Filed under Friday Fellow, Fungi, Parasites

Friday Fellow: Green-Banded Broodsac

by Piter Kehoma Boll

Parasites are very speciose, and I often feel that I’m not giving enough space for them here, especially when I bring you a flatworm, which is likely the group with the largest number of parasite species. So let’s talk about one today at last.

The first parasitic flatworm I am introducing to you is Leucochloridium paradoxum, the green-banded broodsac. It is a member of the flatworm group Trematoda, commonly known as flukes and, as all flukes, it has a complex life cycle.

Adults of the green-banded broodsac live in the intestine of various passerine birds of North America and Europe. The eggs they lay reach the environment through the bird’s feces and are eventually ingested by land snails of the genus Succinea.

145

Adult individual of Leucochloridium paradoxum (left), an infected intermediate hose, a sail of the genus Succinea (center) and the sporocysts along the snail’s internal organs (right). Images not to scale. Extracted from http://medbiol.ru/medbiol/dog/0011a975.htm

Adults of Leucochloridium paradoxum are very similar to the adults of other species of the genus Leucochloridium, the main differences being seen in the larval stages. Inside the body of the snail, the eggs hatch into the first larval stage, the miracidium, which inside the snail’s digestive system develops into the next stage, the sporocyst.

The sporocyst has the form of a long and swollen sac (the broodsac, hence the common name) that is filled with many cercariae, which are the next larval stage. The sporocyst than migrates towards the snail’s eye tentacles, invading them and turning them into a swollen, colorful and pulsating structure that resembles a caterpillar. In this stage of infection, the poor snail is most likely blind and cannot avoid light as it normally does. As a result, it becomes exposed to birds that mistake it for a juicy caterpillar, eating it eagerly.

683px-succinea_mit_leucocholoridium

A poor snail of the species Succinea putris with a broodsac in its left eye stalk. There is only one terrible fate for this creature. Photo by Thomas Hahmann.*

When the snail is eaten, the sporocyst burst and the several cercariae are released. In the bird’s intestine, they develop into adults and restart the nightmarish cycle.

– – –

Like us on Facebook!

Follow us on Twitter!

– – –

References:

Rząd, I.; Hofsoe, R.; Panicz, R.; Nowakowski, J. K. (2014) Morphological and molecular characterization of adult worms of Leucochloridium paradoxum Carus, 1835 and L. perturbatum Pojmańska, 1969 (Digenea: Leucochloridiidae) from the great tit, Parus major L., 1758 and similarity with the sporocyst stages. Journal of Helminthology 88(4): 506-510. DOI: 10.1017/S0022149X13000291

Wikipedia. Leucochloridium paradoxum. Available at < https://en.wikipedia.org/wiki/Leucochloridium_paradoxum >. Access on March 8, 2018.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Leave a comment

Filed under flatworms, Friday Fellow, Parasites, worms, Zoology

Friday Fellow: Large Roundworm of Pigs

by Piter Kehoma Boll

It’s time to go back to the roundworms and to the parasites once more. Probably one of the most famous roundwors is the large roundworm of humans, Ascaris lumbricoides, but today I’m going to talk about its closest relative, the large roundworm of pigs, Ascaris suum.

Found worlwide, the large roundworm of pigs, as its name implies, infects pigs. It is a large worm of the phylum Nematoda and is very similar to the large roundworm of humans, the main difference being simply that the former infects pigs and the latter infects humans.

800px-asuum_male_and_female

A typical male (top) and female (bottom) of Ascaris suum. Photo by Wikimedia user VlaminckJ.*

The adult worms live in the intestine of pigs and show sexual dimorphism. Males are smaller, measuring 13–31 cm in length and have a curled posterior end. Females are larger, measuring 20–49 cm and do not have the curled posterior end. They have a light pink to whitish color and may occur in large quantities inside the host.

When sexually mature, a female can lay up to 200 thousand eggs per day and have up to 27 million eggs in its uteri. The eggs are eliminated with the pig feces and remain in the environment where the embryo starts its development. As soon as the eggs are eaten by a pigg, the eggs hatch and the larvae crawl into the walls of the large intestine and reach the bloodstream, being carried to the liver and from there to the lungs. In the lungs, they reach the alveoli and start to migrate upward toward the trachaea and are coughed up and swallowed by the pig, reaching the intestine again. There, they remain in the small intestine and complete their development into adults.

The great similarity of Ascaris suum and Ascaris lumbricoides implicate that they have a recent common ancestor which may have split into the two species after humans started to raise pigs. Eventually Ascaris suum may also infect humans and Ascaris lumbricoides may infect pigs too, but they seem to have a preference and an improved development in their “traditional” host. Molecular studies indicate that the populations of both species seem to be considerable isolated, but there have been some eventual hybridizations, suggesting that they are yet in the process of become fully separate species.

– – –

References:

Leles, D.; Gardner, S. L.; Reinhard, K.; Iñiguez, A.; Araujo, A. (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Parasite and Vector5: 42. https://dx.doi.org/10.1186/1756-3305-5-42

Wikipedia. Ascaris suum. Available at: < https://en.wikipedia.org/wiki/Ascaris_suum >. Access on November 6, 2017.

– – –

*Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Leave a comment

Filed under Friday Fellow, Parasites, worms

Friday Fellow: H. pylori

by Piter Kehoma Boll

I already introduced three species of bacteria here, all of them free-living and/or friendly little ones. But we all know that many bacteria can be a real annoyance to us humans, and so it’s time to show some of those, right?

I decided to start with one that I thought to have living inside me some time ago (but it happened that I don’t), and this is the ill-tempered Helicobacter pylori, which as usual lacks a common name, but is commonly called H. pylori for short by doctors, so that’s how I’ll call it.

empylori

Electron micrograph of a specimen of H. pylori showing the flagella.

The most common place to find the H. pylori is in the stomach. It is estimated that more than half of the human population has this bacterium living in their gastrointestinal tract, but in most cases it does not affect your life at all. However, sometimes it can mess things up.

H. pylori is a 3-µm long bacterium with the shape of a twisted rod, hence the name Helicobacter, meaning “helix rod”. It also has a set of four to six flagella at one of its ends, which make it a very motile bacterium. The twisted shape, together with the flagella, is thought to be useful for H. pylori to penetrate the mucus lining the stomach. It does so to escape from the strongly acidic environment of the stomach, always penetrating towards a less acidic place, eventually reaching the stomach epithelium and sometimes even living inside the epithelial cells.

In order to avoid even more the acids, H. pylori produces large amounts of urease, an enzyme that digest the urea in the stomach, producing ammonia, which is toxic to humans. The presence of H. pylori in the stomach may lead to inflammation as an imune response of the host, which increases the chances of the mucous membranes of the stomach and the duodenum to be harmed by the strong acids, leading to gastritis and eventually ulcers.

The association between humans and H. pylori seem to be very old, possibly as old as the human species itself, as its origin was traced back to East Africa, the cradle of Homo sapiens. This bacterium is, therefore, an old friend and foe and it will likely continue with us for many many years in the future.

– – –

References:

Linz, B.; Balloux, F.; Moodley, Y. et al. (2007) An African origin for the intimate association between humans and Helicobacter pyloriNature 445: 915–918. https://dx.doi.org/10.1038/nature0556

Wikipedia. Helicobacter pylori. Available at < https://en.wikipedia.org/wiki/Helicobacter_pylori >. Access on August 5, 2017.

Leave a comment

Filed under Bacteria, Friday Fellow, Parasites